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What is Computational Learning

 Computational learning is modeling “learning” 
in the same way as modeling computation. 

 Practical applications of computational learning 
include learning or knowledge discovery from 
discrete data: 

strings: texts, DNA sequences,…
trees: parsing trees, XML documents
tables: relational data,
graphs: …
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Machine Learning

 Machine Learning originally means mechanisms 
which make machines wiser and wiser by 
training them more and more.

 Recently Machine Learning also (and mainly) 
means mechanisms with which we can discover 
rules or structures hidden behind data.

“Make unvisible structure be visible”
 Sometimes we fail in applying machine learning to a 

specific purpose because of what type of rules would 
be discovered. 
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Why discrete data in ML(1)?
 We are surrounded by full of strings, sentences, tables,… 
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Why discrete data in ML?(2)
 Computers work with strings(sequences) consisting of 

0 and 1. 

[Wikipedia]
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Why sequences in ML?(1)
 Sentences are strings(sequences) consisting of 

characters in an alphabet.

[Wikipedia] [Davis, M. : The Unsolvable, Raven Press]
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Why sequences in ML?(2)

A C A U G UACA A G AC CUU
5’ 3’

 Many data for academic 
research is now open. In 
particular, many string data 
are provided in the area of
bio-informatics.
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Learning from  
Numerical Data
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Task

 Every input signal is given to the perceptron
with its ‘teaching’ or ‘target’ signal which tells 
‘yes’ or ‘no’. 

Example The target is A
Input

Teaching signal yes                       no

A B
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Learning Machine 

z
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A Simple Learning Method
 Revise the weights wi according to the 

combination of the output of the perceptron
network and the 'teaching' or 'target' signal.
 Learning depends on the ways of the revision.
 The so called “Perceptron Learning” adopt the 

revision method as follows:
If the output coincides with the teaching signal, do 
nothing,
otherwise add  to the weights wi in the direction 
to the teaching signal. 
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Mathematical Formalization
 In order to our discussion simple , we consider 

classification into two classes.
Formalization of the Learning Problem
For given two finite subsets C (yes), D (no) ( CD = )

in Rn，find a line px + c = 0 which satisfies
x C  (w, x) + c >  0 
x D  (w, x) + c <  0  

 In order to find c as well as w, 
we regard every data x as (x, 1) 
and the target line as (w’, x) = 0. 
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A Simple Learning Algorithm
1. Let the input data x1, x2, …, xN
2. Initialize w as some value. 
3. For n = 1,2,…, N,

if xn  C and (w, xn) < 0 
replace w with w +  xn

else if xn  D and (w, xn) > 0
replace w with w   xn

otherwise
do nothing

4. For n = 1,2,…, N 
if  no xn satisfies

( xn  C and (w, xn) < 0 ) or ( xn  D and (w, xn) > 0 )
terminates and return w

else 
go to 3. 13



Example
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Learning from Discrete 
Data by Embedding
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Two approaches 
Two approaches can be considered towards learning from 
discrete data:
 By transforming discrete data into data in Rn, in other 

words, embedding discrete data into Rn, 
and apply learning methods for data in in Rn. 

 By analyzing properties of discrete data, in other words,
and using mathematics on discrete data and develop 
new learning theories and methods for discrete data.

This course is along the second approach. 
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Example of Transformation (1) 
 Let D be  the domain of sequences in English.
 We fix a dictionary (bag of keywords) W = (w1,w2,…,wk), 

and define a transformation as: 
(s) (x1, x2,…, xk) where 

xi  how many times the keyword wi appears in s
for i = 1,2, ... , n

Example
W =(book, compute, is, paper, suppose, square, symbol, write) 
s1: Computing is normally done by writing certain symbols on paper.
s2: We may suppose this paper is divided into squares like a child's 

arithmetic book. 
s1) = (0, 0, 1, 1, 1, 0, 0, 1, 1)
s2) = (1, 1, 1, 0, 1, 1, 1, 0, 0)



 Alan Turing: On Computable Numbers, with an Application to the 
Entscheidungsproblem: A correction”. Proceedings of the London 
Mathematical Society 43: pp. 544–6. 1937. doi:10.1112/plms/s2-
43.6.544



Example of Transformation (2) 
A simple method for embedding sequences into Rn is using N-grams.
 Let D be  the domain of sequences consisting of  characters a and b.
 An N-gram is a sequence consisting of  N characters. 

For example 3-grams are aaa, aab, aba, …, bbb.
 We have 2N different N-grams for the domain D, and enumerate 

them as w1, w2,…, wn, where n = 2N .
 We  define a transformation D  Rn   as: 

(s) (x1, x2,…, xk) where 
xi  how often wi appears in s   for i = 1,2, ... , n

Example
Let  w1= aaa, w2 = aab, w3 = aba, w4 = abb, …, w8 = bbb
and s = aabbaaabbb.

s1) = (1, 2, 0, 1,…, 1)
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Example of Transformation (3)
 We do not need the expression of but need the value 

K(x, y) = (x)·(y), called the kernel function. 



+1
1

D

Linear separation
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Support Vector Machine(1)
 Input: a set of numerical data

{(x1, c1) , (x2 , c2) ,..., (xm, cm) } xi Rn

where each ci {+1, 1} is a class signal for xi

Output: find a liner function (hyper-plane)
f (x) =  wi xi · x + b

which sign ( f (xi)) = yi for all i and
maximize the margin  min1 i m d(f , xi)

+1
1



Support Vector Machine(2)
 In order to find c as well as w, we regard every data 

xi as xi’ = (xi ,1) and  f (xi’) = w’ · x’i = 0. 
Moreover,  we can represent two conditions 

ci +1  w ’ · x’i  0 and ci 1  w’ · x’i  0  
into one 

ci (w’ · x’i)  0 
 In this setting

d(f , x’i) = || x’i || cosi =  

 In the followings, we write
xi for xi’ and wi for wi’ . 

+1
1

1
||w’||



Kernel function for Boolean Data 
 If vectors x and y are boolean, the dot product x · y

represents:  how many coodinates of x and y coincide. 
Example

x = (0, 0, 1, 1, 1, 0, 0, 1, 1)
y = (1, 1, 1, 0, 1, 1, 1, 0, 0)

x · y = 2
 For two boolean values x and y , the logical conjunction x · y 

coincides with the product x y as real numbers.

 This dot product is too simple and the DNF kernel is 
developed  [Sadohara01, Kahdon05]

K(x, y) = 2(x · y) 1



RNA Classification 1

RNA sequences are 
accumulated in RNA families,
and the members of each family
have similar structures and 
functions.

Recently, in bioinformatics, classifying
non-coding RNAs (ncRNAs) is paid to 
much attention, because they are 
considered to be a factor of the 
difference between higher organism 
and others.

We can get the RNA sequences 
in Rfam database.



RNA Classification 2
In RNA classification, 
the secondary structures detected by 
base pairs (a-u, c-g) are important.

RNA sequence
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secondary structure

5’ 3’

・

・

・

・

・

・a c a u g ua c a a g ac c u u5’ 3’

To distinguish between the member sequences in a 
given RNA family and non-member sequences by 
taking secondary structures into account.

The purpose



Structure as coodinate

364318CAGCAUCGAUGA
RNA

343317CAGCAUGGAGAC

393416AUUAGUUGUCGA

C A G C A G C U A G U U
5’ 3’

 We use structures as coodinates (attributes) for the 
transformation of RNA sequences.

The Naïve Algorithm takes
O(L4) time. 
An improved algorithm 
runs in O(L3). 



Learning from Discrete Data 
by Discrete Mathematics
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Problems on the first approach

 The obtained data in Rn might not locate densely.
 They sometimes in  Nn .

 Even if a rule is obtained by some learning 
machine, it might be difficult to interpret the 
rule, or what the rule mean. 
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On the second approach

We have to know mathematics on discrete data.
 The mathematics may vary from type to type of 

data.
 mathematics on sequences, mathematics on trees,

mathematics on graphs,…
 We must notice that we need mathematics for 

machine learning. 
 We make machine learning more abstract, and then 

observe the correspondence between numerical data 
and discrete data. 

29



More General Learning
 Recently a machine learning method is 

recognized as one to find
argminfH ( x D Loss(f, x) +  P(f ))

where 
Loss(f, x) is a loss function and
P(f ) = is a penalty function.  

 This definition is declarative. 
 This course we introduce some of the instances of 

Loss(f, x) and P(f ).
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Abstract Classification
 A half-plane P which contains C (yes) and excludes D 

(no) is to be learned
 The half-plane P  is represented as a pair  (w, c) which 

means the linear inequation (w, x) + c > 0. 
 Let C(p)={x  Rn | p(x) } for a predicate p. 

Then the search space (version space) is 
C = {C( x.((w, x) + c > 0)) | w  Rn , c  Rn }.

The set of parameter s are from  
H = { (w, c) | w  Rn , c  Rn }. 

 The training examples are provided as the sets C and D.
 A learning algorithm is provided. 
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Learning from string data
 Assume that we are treating data on the domain of 

sequences of characters.
 Then we treat the problem of classifying two finite sets 

of sequences C (yes), D (no) ( CD = ).

Example
Let D be  the domain of sequences consisting of  characters 

a and b.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babbb
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How to distinguish data 

In this course we treat the following methods:
 Abstract machines to distinguish data

 Finite state automata, Tuning Machine, …
 Formal grammar with production rules 

 Linear grammar, Context free grammar, …
 Regarding string data as mathematical objects

 Based on the operation :  aaba means a・(a・(b・a)))
monomials (patterns), instead of linear 

combinations  
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Finite state automaton

a 0 1 1 0 1 0 0 1 B B

q0

q2q4

1

0,1

0 1

0
0

1

q1
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Grammar with productions
 S = { anbn |  n   = { a…ab…b |  n  

n times  n times

abaabbaaabbbaaaabbbb
 The language is defined with a set of productions:

S abS aSb
 Some examples of derivations:

S ab
S aSb aabb
S aSb aaSbb aaabbb
S aSb aaSbb aaaSbbb aaaabbbb

 It is easy to show that there is no FA which accepts L.
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Patterns (Monomials)
 A pattern  is a sequence consisting symbols and 

variables 
 Assuming that we can distinguish characters and varaibles.

Example
Characters: ab,    Variables : x, y,…
Patterns: axbbxaybaaxbybxa
The set defined with a pattern 

Laxb aababbaaabaabbabababbb
Lbxayb baaabbaabb baaaabbaaabb

baabab
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Making the learning be abstract
 In the case of treating sequences, what is the 

correspondence to the linear inequation?

x C  (w, x) + c  0 
x D  (w, x) + c  0  

parameter (w, c)
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A Learning Algorithm
1. Let the input data x1, x2, …, xN
2. Initialize w as some value. 
3. For n = 1,2,…, N,

if xn  C and (w, xn) < 0 
replace w with w +  xn

else if xn  D and (w, xn) > 0
replace w with w   xn

otherwise
do nothing

4. For n = 1,2,…, N 
if  no xn satisfies

( xn  C and (w, xn) < 0 ) or ( xn  D and (w, xn) > 0 )
terminates and return w

else 
go to 3. 38



Machines with parameters
 We regard the inequation (w, x) + c  0 as a 

machine to distinguish whether or not every 
datum x is in C.

 For the case of treating strings, we should adopt 
machines which can distinguish whether or not 
every string x is in C.
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Learning Finite State Automata
1. Let the input data x1, x2, …, xN
2. Initialize L as some automaton. 
3. For n = 1,2,…, N,

if xn  C and M does not accept xn
replace M with another M’

else if xn  D and M accepts xn 
replace M with another M’

otherwise
do nothing

4. For n = 1,2,…, N 
if  no xn satisfies

(xn  C and M does not accept xn ) or (xn  D and M accepts xn )
terminates and return M

else 
go to 3. 40



Turing Machine
 Alan Turing: On Computable Numbers, with an Application to the 

Entscheidungsproblem: A correction”. Proceedings of the London 
Mathematical Society 43: pp. 544–6. 1937. doi:10.1112/plms/s2-
43.6.544



Turing Machine(2)
 Computing is normally done by writing certain symbols 

on paper. We may suppose this paper is divided into 
squares like a child's arithmetic book. 

 I assume then that the computation is carried out on one-
dimensional paper, i.e. on a tape divided into squares.



Turing Machine(3)
 The behaviour of the computer at any moment is 

determined by the symbols which he is observing and 
his “state of mind” at that moment. 

 We will also suppose that the number of states of mind 
which need be taken into account is finite.



Data
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Conclusion
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Elements of Learning Theories
 A class of rules to be learned
 A uniform representation method of each rule

 We assume that each rule is represented by an 
expression/a formula defined by a grammar.

 A representation method of training 
examples/observation

 A learning algorithm
 A method evaluation / some criteria of 

justification of the learning algorithm
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