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Revised version of  learn-patterns 

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1 
for  n = 1  forever

receive en = sn , bn 
while ( 0  j  n

(ej = sj ,   and sj  L()) and
(ej = sj ,   and sj  L())

 = ’ for an appropriate ’; k ++
output 
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Positive Presentations

 A presentation of L() is a infinite sequence 
consisting of positive and negative example. 

 A presentation  is positive if  consists only of 
positive example < s, +> and any positive example 
occurs at least once in . 

1, 2, 3, ... e1, e2, e3, ...


L()
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Which patterns should be chosen?
 Intuitively, choose a minimal language which  contains 

all of the positive examples at the moment.
 That is, avoid over-generalization!

L(i)

L()
the set of positive examples.
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 A learning algorithm A EX-identifies a class C of 
languages in the limit from psoitive presentations if
A EX-identifies every language  in C in the limit from 
positive presentations. 

 A learning algorithm A BC-identifies a class C of 
languages in the limit from positive presentations if
A BC-identifies every language  in C in the limit from 
positive presentations.

Identification in the limit [Gold]
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Analysis of Patterns
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Analysis of Patterns (1)
Example  = axxbbyaa

Laxxbbyaa
aaabbaaaaaabbbaa abbbbaaa abbbbbaa, 

aaaaabbaaaaaaaabbbaa aababbbaaa
aababbbbaa,…, aabaaabaabbbbbababaa,…}

 Using  examples as long as  : 
aaabbaaaaaabbbaa abbbbaaa abbbbbaa

{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,a), (y,b)}

We can know that the 2nd, 3rd,        The variable at the 6th  
and 6th positions must be                   position is different from 
variables. those at the 2nd and 3rd.            7



Analysis of Patterns (2)
 Any language L(’) containing the four strings must be a 

superset of L().

aaabbaaaaaabbbaa abbbbaaa abbbbbaa
{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,a), (y,b)}

 If ’ and  are of same length, ’ has more variables than 
 If ’ is shorter than , ’ has at least one variable with which 

some substring of longer than 2 must be replaced. 
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Characteristic Set of L()

 Let  be a pattern which contains variables x1, x2, ..., xn.  
Consider the following substitutions:

a = {(x1, a), (x2, a), ..., (xn, a)},
b = {(x1, b), (x2, b), ..., (xn, b)},
1 = {(x1, a), (x2, b), ..., (xn, b)},
…
n = {(x1, b), (x2, b), ..., (xn, a)}

 The set {pa, pb , p1, pn} is a characteristic set of 
L().

9



Anti-Unifcation of Strings 
 For a set C of stings of same length

s1    = c11 c12…c1i …c1k

s2 = c21 c22…c2i…c2k

…
sn = cn1 cn2…cnj…cnk

the anti-unification of C is a pattern 
 = c11c21…cn1c12c22…cn2c1kc2k…cnk

where
c1c2…cn=     c if c1 = c2 = … = cn = c

x(c1c2…cn) otherwise.
and  c1c2…cnis the “index” of c1c2…cn. 10



Analysis of Patterns (3)
Lemma 1 For every string s, there are only finite number 

of pattern languages containing s. 
Proof. If s L(), then |s|  ||. 

Example The languages containing s = aab are
L(aab),
L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),
L(xyb), L(xay), L(axy), L(xxy), L(xy),
L(xyz), 
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Hasse Diagram
L(x)

L(xy)

L(xb) L(xyz)                   L(ax)

L(xyb)          L(xxy)           L(xay)         L(axy)

L(xab)          L(axb)           L(xxb)         L(aax)

L(aab)
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General Theory of Learning from 
Positive Data with Characteristic Sets 
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Positive presentations

 A presentation of L() is a infinite sequence 
consisting of positive and negative example. 

 A presentation  is positive if  consists only of 
positive example < s, +> and any positive example 
occurs at least once in . 

1, 2, 3, ... e1, e2, e3, ...


L()
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Theorem The revised algorithm of Learn-pattern with the  
minimal language strategy EX-identifies the class of all 
pattern languages in the limit from positive presentations. 

 The  minimal language strategy means that when revising 
conjecture  a pattern generating a minimal language for 
positive data is chosen as the “appropriate” pattern. 

Identification of patterns
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A General Framework of Learning
 A class of formal languages L(G) indexed with G
 G: A set of expressions such that each expression in G

represents one language in L(G), and every language in 
L(G) is represented by at least one expression in G.
 We assume that There is an algorithm which determines 

whether or not wL(g) for every string w* and g. 
Examples of G : a set of finite state automata, a set of CFGs, 

a set of patterns,…
 G

g

g1

g2
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L(g) in the limit 
from positive presentations if
for any positive presentation  = s1, s2, s3, ... of L(g) and 
the output sequence g1, g2, g3, ... of A,  there exists N
such that for all n > N gn= g’ and L(g’) = L(g)

 A learning algorithm A BC-identifies L(g) in the limit 
from positive presentations if
for any positive presentation  = s1, s2, s3, ... of L(g) and 
the output sequence g1, g2, g3, ... of A, there exists N such 
that for all n > N  gn= g’ and L(gn) = L(g) 

g1, g2, g3, ... s1, s2, s3, ...
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GCD and Learning 
A class of languages in N : 

L(N) = {L(m) | m  N } 
L(m) = {01…10 | n mod m = 0}

L(m) = {n  N |  n mod m = 0}

A class of languages in Z : 
L(N) = {L(m) | m  N } 
L(m) = {1…1 | n mod m = 0}  {01…1 | n mod m = 0}

L(m) = {n  Z |  | n | mod m = 0}

n

n n
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Positive presentation
72, 48, 60, …,12,…

Conjecture
72, 24, 12,…,12,…

GCD and Learning 

L(m)
Compute the GCD 
of s1, s2, …, sk
with Euclidean 
Algorithm

C

L(m)
L(m’)

 L(N) = {L(m) | m  N } 
L(m) = {01…10 | n mod m = 0}
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Proving that L(N) is identifiable
 For every n  N,  the characteristic set of L(m) in L(N) is 

{ m }, that is, { m } L( m’) implies  L(m) L(m’).

 To see this, assume that { m } L( m’).
This is equivalent to m  L( m’) and from the definition 
of L( m’), m = k’ m’ for some k’  N (Z).
 L(m) = {n  N |  n mod m = 0} ( {n  Z |  | n | mod m = 0} ).

Let n be any element in  L(m). Then, from the definition,   
there exists k  N (Z) such that n = k m.  For the k’ and k,
it holds that n = k k’ m’. This means n L( m’), and    
therefore L(m) L(m’).
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C2: The Characteristic Set Property
 A subset C(g) of a language of L(g) is a characteristic 

set of L(g) in L(G) if 
(1) C(g) is a finite set and 
(2) for every L(g’)  L(G) C(g)  L(g’) implies  

L(g)  L (g’)
Theorem [Kobayashi] A class L(G) of languages is 
identifiable in the limit from positive presentation 
if every language L(g) in L(G) has a characteristic set 
C(g) in L(G).
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Which grammar should be chosen?
 Choose g such that C(g) {s1,…, sn}

 The examples are from L(g*), that is, {s1,…, sn} L(g*).
and therefore C(g) L(g*). From the definition of 
characteristic sets, this implies L(g) L(g*). 
So over generalization never
happens.

L(g)
L(g*)

{s1,…,sn}
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EC1: The Finite Tell-tale Property
 A subset T(g) of a language of L(g) is a finite tell-tale of      

L(g) in L(G) if 
(1) T(g) is a finite set and 
(2) T(g)  L(g’)  L (g) for no L(g’)  L(G) other 

than L(g)
Theorem [Angluin] A class L(G) of languages is 
identifiable in the limit from positive presentation if and 
only if every language L(g) in L(G) has a finite tell-tail 
T(g) in L(G) and there is a procedure which generates 
elements of T(g) when the grammar g is given as an input. 
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Tell-tales and Characteristic Sets 

Finite Tell-tale T(g) of L(g):
 T(g) ⊆L(g) (T is a finite set)
 For no L(g’)∈L(G) other than

L(g’),  T(g)⊆L(g’)⊂L(g)
T(g) L(g)

Characteristic set C(g) of L(g):
 T(g) ⊆L(g) (T is a finite set)
 For every L(g’)∈L(G)

C(g)⊆L(g’) implies L(g) ⊆ L(g’) 

L(g)C(g)

×
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C3:Finite Elasticity 
 A class L(G) of languages has the infinite elasticity if 

there is an infinite sequence of strings w0, w1, w2, …, 
and an infinite sequence languages in L(G) L(g0), L(g1), 
L(g2) such that
{w0, w1, ..., wn } L(gn) and wn L(gn) for every n 1. 

A class L(G) of languages has the finite elasticity if it 
does not have the infinite elasticity. 

Th. [Wright] A class L(G) of languages is identifiable in 
the limit from positive presentation if L(G) has the finite 
elasticity.
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C4: Finite thickness
 A class L(G) of languages has the finite thickness if 

for all w *  there are only a finite number of 
languages in L(G) which contain w.

Theorem [Angluin] A class L(G) of languages is 
identifiable in the limit from positive presentation if 
if L(G) of languages has the finite thickness. 
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L(N) has the Finite Thickness
 From the finite thickness condition:

L(N) = {L(m) | m  N } has the finite thickness property.
 From the fact 

GCD(e1, e2, …, ek ) GCD(e1, e2, …, ek, ek+1 )
and the following property:

Let  a1, a2, …, an ,… be a infinite sequence of 
natural numbers satisfying that

an   an+1 for all n  1.
Then there is N  1 such that an  an+1 for all n  N.
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Relation among the conditions

 EC1（necessary and sufficient） [Angluin]

 C2: [Kobayashi] 

 C3: [Wright]

 C4: [Angluin]

⇒

⇒

⇒

⇒

⇒

⇒

U : a class of languages 
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A Negative Result
Theorem [Gold] There is no learning algorithm which 

identifies any regular language from positive data. 

 Note that  a regular language is a formal language which 
is accepted by a finite state automaton.  It is also  
represented in a regular expression.

Theorem [Gold] There is no learning algorithm which 
identifies any regular expression from positive data. 
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A Negative Result (2)

e1, e1, …, e 2,...

N1+1

 We construct a positive presentation  of L in the 
following manner.  

 Let e1 be a string in L. Since the set {e1 } is also in C and 
A must identify {e1}.  So the first N1 examples of  are 
all E1 , until “A identifies {e1}.”

h1,h2,h3,..., g1, g1, …

N1 n > N1 hn = g1 and L(g1) = {e1}
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A Negative Result (3)
 Let the (N1+1)-th example be e2 which is different from

e1 .
 Since C contains {e1, e2}, the learning algorithm A 

identifies {e1, e2} in the limit.

N1 n > N2 > N1 gn = g2 and {e1, e2}

e1,e1,... e2,..., e3,...

N1+1

h1, h2,..., g1,...,
g2 ,..., 

N2+1
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A Negative Result (4)
 Let the (N2+1)-th example be e3 which is different from

both of e1 or e2.
 Since C contains {e1, e2 ,e3}, A identifies {e1, e2 , e3} in 

the limit.

N3 n >N3 > N2> N1 hn = g3 and L(g3)={E1, E2 , E3}

 The language L ={e1, e2 , e3 , e4,…} is a infinite and A
cannot identify L. 
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