Computational Learning Theory Learning from positive presentations

Akihiro Yamamoto 山本 章博

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/ akihiro@i.kyoto-u.ac.jp Revised version of *learn-patterns*

• Fix an effective enumeration of patterns on $\Sigma \cup X$:

$$\pi_1, \pi_2, \ldots,$$

$$k = 1, \ \pi = \pi_{1}$$

for $n = 1$ forever
receive $e_{n} = \langle s_{n}, b_{n} \rangle$
while ($0 \le \exists j \le n$
 $(e_{j} = \langle s_{j}, + \rangle \text{ and } s_{j} \notin L(\pi))$ and
 $(e_{j} = \langle s_{j}, - \rangle \text{ and } s_{j} \in L(\pi))$
 $\pi = \pi'$ for an appropriate $\pi'; k ++$

output π

Positive Presentations $e_1, e_2, e_3, ...$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$

- A presentation of L(π) is a infinite sequence consisting of positive and negative example.
- A presentation σ is positive if σ consists only of positive example < s, +> and any positive example occurs at least once in σ.

Which patterns should be chosen?

- Intuitively, choose a minimal language which contains all of the positive examples at the moment.
 - That is, avoid over-generalization!

Identification in the limit [Gold]

- A learning algorithm A EX-identifies a class C of languages in the limit from psoitive presentations if A EX-identifies every language in C in the limit from positive presentations.
- A learning algorithm A BC-identifies a class C of languages in the limit from positive presentations if A BC-identifies every language in C in the limit from positive presentations.

Analysis of Patterns

Analysis of Patterns (1)

Example $\pi = axxbbyaa$

- *L*(a*xx*bbyaa)
- ={aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa, aaaaabbaaa, aaaaabbbaa, aababbbbaaa, aababbbbaa,..., aabaaabaabbbbbbababaa,...}

Analysis of Patterns (2)

Any language L(π') containing the four strings must be a superset of L(π).

aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa $\theta_1 = \{(x,a), (y,a)\} \ \theta_2 = \{(x,a), (y,b)\} \ \theta_3 = \{(x,b), (y,a)\} \ \theta_4 = \{(x,a), (y,b)\}$

- If π ' and π are of same length, π ' has more variables than π .
- If π ' is shorter than π , π ' has at least one variable with which some substring of π longer than 2 must be replaced.

Characteristic Set of $L(\pi)$

Let π be a pattern which contains variables x₁, x₂, ..., x_n.
 Consider the following substitutions:

$$\theta_{a} = \{(x_{1}, a), (x_{2}, a), ..., (x_{n}, a)\},\$$

$$\theta_{b} = \{(x_{1}, b), (x_{2}, b), ..., (x_{n}, b)\},\$$

$$\sigma_{1} = \{(x_{1}, a), (x_{2}, b), ..., (x_{n}, b)\},\$$

$$\sigma_n = \{(x_1, \mathbf{b}), (x_2, \mathbf{b}), ..., (x_n, \mathbf{a})\}$$

• The set $\{p\theta_a, p\theta_b, p\sigma_1, ..., p\sigma_n\}$ is a characteristic set of $L(\pi)$.

Anti-Unifcation of Strings

• For a set *C* of stings of same length

$$s_{1} = c_{11} c_{12} \dots c_{1i} \dots c_{1k}$$

$$s_{2} = c_{21} c_{22} \dots c_{2i} \dots c_{2k}$$

$$\dots$$

$$s_{n} = c_{n1} c_{n2} \dots c_{nj} \dots c_{nk}$$

the anti-unification of C is a pattern

$$\pi = \gamma(c_{11}c_{21}...c_{n1})\gamma(c_{12}c_{22}...c_{n2})...\gamma(c_{1k}c_{2k}...c_{nk})$$

where

 $\gamma(c_1c_2...c_n) = \begin{bmatrix} c & \text{if } c_1 = c_2 = ... = c_n = c \\ x_{\iota(c1c2...cn)} & \text{otherwise.} \end{bmatrix}$ and $\iota(c_1c_2...c_n)$ is the "index" of $c_1c_2...c_n$.

Analysis of Patterns (3)

Lemma 1 For every string *s*, there are only finite number of pattern languages containing *s*.

Proof. If $s \in L(\pi)$, then $|s| \ge |\pi|$.

Example The languages containing s = aab are L(aab), L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x), L(xyb), L(xay), L(axy), L(xxy), L(xy), L(xyz),

General Theory of Learning from Positive Data with Characteristic Sets

- A presentation of L(π) is a infinite sequence consisting of positive and negative example.
- A presentation σ is positive if σ consists only of positive example < s, +> and any positive example occurs at least once in σ.

Identification of patterns

Theorem The revised algorithm of *Learn-pattern* with the minimal language strategy EX-identifies the class of all pattern languages in the limit from positive presentations.

• The minimal language strategy means that when revising conjecture π a pattern generating a minimal language for positive data is chosen as the "appropriate" pattern.

A General Framework of Learning

- A class of formal languages L(G) indexed with G
- G: A set of expressions such that each expression in G represents one language in L(G), and every language in L(G) is represented by at least one expression in G.
 - We assume that There is an algorithm which determines whether or not w∈L(g) for every string w∈Σ* and g.
 Examples of G : a set of finite state automata, a set of CFGs, a set of patterns,...

Identification in the limit [Gold]

$$s_1, s_2, s_3, \dots$$
 s_1, s_2, s_3, \dots s_1, s_2, s_3, \dots

• A learning algorithm A EX-identifies L(g) in the limit from positive presentations if for any positive presentation $\sigma = s_1, s_2, s_3, \dots$ of L(g) and

the output sequence g_1, g_2, g_3, \dots of A, there exists N such that for all $n > N g_n = g'$ and L(g') = L(g)

 A learning algorithm A BC-identifies L(g) in the limit from positive presentations if

for any positive presentation $\sigma = s_1, s_2, s_3, \dots$ of L(g) and the output sequence g_1, g_2, g_3, \dots of A, there exists N such that for all $n > N - g_n = g'$ and $L(g_n) = L(g)$

GCD and Learning

A class of languages in N : $L(N) = \{L(m) \mid m \in N \}$ $L(m) = \{0 \underbrace{1 \dots 1}_{n} 0 \mid n \mod m = 0\}$ $L(m) = \{n \in N \mid n \mod m = 0\}$

A class of languages in Z :

$$L(\mathbf{N}) = \{L(m) \mid m \in \mathbf{N} \}$$

$$L(m) = \{\underbrace{1...1}_{n} \mid n \mod m = 0\} \cup \{\underbrace{01...1}_{n} \mid n \mod m = 0\}$$

$$L(m) = \{n \in \mathbf{Z} \mid |n| \mod m = 0\}$$

Proving that L(N) is identifiable

• For every $n \in \mathbb{N}$, the characteristic set of L(m) in $L(\mathbb{N})$ is $\{m\}$, that is, $\{m\} \subseteq L(m')$ implies $L(m) \subseteq L(m')$.

• To see this, assume that $\{m\} \subseteq L(m')$. This is equivalent to $m \in L(m')$ and from the definition of L(m'), m = k'm' for some $k' \in \mathbf{N}(\mathbf{Z})$.

• $L(m) = \{n \in \mathbb{N} \mid n \mod m = 0\} (\{n \in \mathbb{Z} \mid |n| \mod m = 0\}).$ Let *n* be any element in L(m). Then, from the definition, there exists $k \in \mathbf{N}$ (**Z**) such that n = k m. For the k' and k, it holds that n = k k' m'. This means $n \in L(m')$, and therefore $L(m) \subseteq L(m')$.

C2: The Characteristic Set Property

- A subset C(g) of a language of L(g) is a characteristic set of L(g) in L(G) if
 - (1) C(g) is a finite set and
 - (2) for every $L(g') \in L(G)$ $C(g) \subseteq L(g')$ implies

 $L(g) \subseteq L(g')$

Theorem [Kobayashi] A class L(G) of languages is identifiable in the limit from positive presentation if every language L(g) in L(G) has a characteristic set C(g) in L(G).

Which grammar should be chosen?

- Choose *g* such that $C(g) \subseteq \{s_1, \dots, s_n\}$
 - The examples are from L(g*), that is, {s1,..., sn} ⊆ L(g*).
 and therefore C(g) ⊆ L(g*). From the definition of characteristic sets, this implies L(g) ⊆ L(g*).
 So over generalization never

happens.

EC1: The Finite Tell-tale Property

A subset T(g) of a language of L(g) is a finite tell-tale of L(g) in L(G) if

(1) T(g) is a finite set and

(2) $T(g) \subseteq L(g') \subseteq L(g)$ for no $L(g') \in L(G)$ other than L(g)

Theorem [Angluin] A class L(G) of languages is identifiable in the limit from positive presentation if and only if every language L(g) in L(G) has a finite tell-tail T(g) in L(G) and there is a procedure which generates elements of T(g) when the grammar g is given as an input.

Tell-tales and Characteristic Sets

Finite Tell-tale T(g) of L(g):

- $T(g) \subseteq L(g)$ (*T* is a finite set)
- For no $L(g') \in L(G)$ other than $L(g'), T(g) \subseteq L(g') \subset L(g)$

Characteristic set C(g) of L(g):

- $T(g) \subseteq L(g)$ (*T* is a finite set)
- For every $L(g') \in L(G)$
 - $C(g) \subseteq L(g')$ implies $L(g) \subseteq L(g')$

C3:Finite Elasticity

A class L(G) of languages has the infinite elasticity if there is an infinite sequence of strings w₀, w₁, w₂, ..., and an infinite sequence languages in L(G) L(g₀), L(g₁), L(g₂) such that

 $\{w_0, w_1, ..., w_{n-1}\} \subseteq L(g_n)$ and $w_n \notin L(g_n)$ for every $n \ge 1$. A class L(G) of languages has the finite elasticity if it does not have the infinite elasticity.

Th. [Wright] A class L(G) of languages is identifiable in the limit from positive presentation if L(G) has the finite elasticity.

C4: Finite thickness

 A class L(G) of languages has the finite thickness if for all w ∈ Σ* there are only a finite number of languages in L(G) which contain w.

Theorem [Angluin] A class L(G) of languages is identifiable in the limit from positive presentation if if L(G) of languages has the finite thickness.

L(N) has the Finite Thickness

• From the finite thickness condition:

L(N) = {L(m) | m ∈ N } has the finite thickness property.
From the fact

 $GCD(e_1, e_2, ..., e_k) \ge GCD(e_1, e_2, ..., e_k, e_{k+1})$ and the following property:

Let $a_1, a_2, ..., a_n, ...$ be a infinite sequence of natural numbers satisfying that

 $a_n \ge a_{n+1}$ for all $n \ge 1$.

Then there is $N \ge 1$ such that $a_n = a_{n+1}$ for all $n \ge N$.

Relation among the conditions

U: a class of languages

EC1 (necessary and sufficient) [Angluin]
C2: [Kobayashi]
C3: [Wright]
C4: [Angluin]

A Negative Result

Theorem [Gold] There is no learning algorithm which identifies any regular language from positive data.

 Note that a regular language is a formal language which is accepted by a finite state automaton. It is also represented in a regular expression.

Theorem [Gold] There is no learning algorithm which identifies any regular expression from positive data.

A Negative Result (2)

- We construct a positive presentation σ of *L* in the following manner.
- Let e₁ be a string in L. Since the set {e₁} is also in C and A must identify {e₁}. So the first N₁ examples of σ are all E₁, until "A identifies {e₁}."

$$\exists N_1 \ \forall \ n > N_1 \ h_n = g_1 \text{ and } L(g_1) = \{e_1\}$$

A Negative Result (3)

- Let the (N_1+1) -th example be e_2 which is different from e_1 .
- Since C contains {e₁, e₂}, the learning algorithm A identifies {e₁, e₂} in the limit.

$$\exists N_{1} \forall n > N_{2} > N_{1} g_{n} = g_{2} \text{ and } \{e_{1}, e_{2}\}$$

$$\underbrace{e_{1}, e_{1}, \dots e_{2}, \dots, e_{3}, \dots \bigoplus \{k_{1}, k_{2}, \dots, g_{1}, \dots, g_{2}, \dots, k_{n_{1}+1}, \dots, g_{n_{2}+1}\}$$

A Negative Result (4)

- Let the (N₂+1)-th example be e₃ which is different from both of e₁ or e₂.
- Since C contains {e₁, e₂, e₃}, A identifies {e₁, e₂, e₃} in the limit.

$$\exists N_3 \forall n > N_3 > N_2 > N_1 h_n = g_3 \text{ and } L(g_3) = \{E_1, E_2, E_3\}$$

• The language $L = \{e_1, e_2, e_3, e_4, ...\}$ is a infinite and A cannot identify L.