
Computational Learning Theory
Learning Patterns (Monomials)

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Formal Languages
  : a finite set of symbols and called an alphabet
  : the set of all finite strings consisting of the symbols

in 
 An empty string is denoted by .
   {}

 A formal language L on is a subset of .
Example

ab
  abaaabbabb aaaaab
L aababb aaabaabbabababbb

2

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(n) = L()

1, 2, 3, ... e1, e2, e3, ...

3

Patterns (Monomials)
 Let X be a countable set of variables

 Assuming  X = 
 A pattern  is an element of ( X)*

 That is, a pattern is a string consisting of symbols and variables.

Example
abX= {x, y,…}
axbaxbbyaaaxbybxa
 We sometime assume that every variable in a pattern is

indexed, in the ordering of its first occurrence.

abX= {x1, x2, x3,…}
ax1bax1bbx2aaax1bx2bx1a

4

Defining languages with patterns

 A language defined with a pattern  is
{ = for some non-empty grounding substitution }

The language is denoted by L().
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbaabb baaaabbaaabbbaabab
bbaab bbabbbbaaabbbaabbbbabab
baaaabbaaabbbaaaaab baaaabb
bbaaabbbaabbbbaaaab bbaaabb5

Substitution (1)

 A substitution is a set of pairs
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and
1, 2, …, n are patterns.

 Applying a substitution  to a pattern  is replacing every
variable xi in  with i simultaneously.
The result is denoted by  .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1  abbabbbaaaxbbya2 abyabbayba

6

Substitution (2)

 A substitution  ={ (x1,1), (x2,2), …, (xn,n) } is non-
empty if all of 1, 2, …,n are in  X)+.

 A substitution grounds a pattern if  *. Such 
is called a grounding substitution for .

 A substitution  ={ (x1, y1), (x2, y2), …, (xn, yn) } is
variable renaming if y1, y2, …, yn are distinct varaibles.
 We regard two patterns equivalent when each one is obtained

from the other by renaming variables.
Examples

Two patterns axb and ayb are equivalent, and they are also
equivalent to ax1b.
Two patterns aaxbxybxa and aaybxbya are equivalent,
and they are also equivalent to aazbwbza and aax1bx2bx1a.

7

Learning pattern languages
Example 1
C = {aababbaaabaabbabababbb 
D = {a bbbbbabbabaaaaba babbb

Example 2
C = {baaabbbabb baaaaabbabaabbbbaabab
D = {a bbbbbabbbaaaaba babbb

8

The learning algorithm learn-patterns

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1
for n = 1 forever

receive en = sn , bn 
while (0  j  n

(ej = sj ,   and sj  L()) and
(ej = sj ,   and sj  L())

 = k ; k ++
output k

9

The learning algorithm learn-patterns

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1
for n = 1 forever

receive en = sn , bn 
while (0  j  n

(ej = sj ,   and sj  L()) and
(ej = sj ,   and sj  L())

 = ’ for an appropriate ’; k ++
output k

10

Patterns v.s. Finite state automata

11

Patterns and FAs
 There does not always exist a FA M for a pattern  such

that L(M) = L(
 There does not always exist a pattern  for a FA M

such that L(M) = L(

A pattern is regular if each variable in  occurs only
once in 
Example A pattern bxayb is regular, but bxaxb is not.
 For a regular pattern  there is a FA M such that L(M) =

L(

12

Regular Expressions (1)
 Mathematically, a regular expression is defined as a

expression constructed of
constants: , , and c for every c in 
operators : ・, +, *

Examples Let = {a, b}. Some examples of RE are:
abaa, a + b, a*, (ab)*,
 + abaa + babb, (ab + ba)*,
a((a + b)*)b, (a + b)* (a + b)

13

Regular Expressions (2)
 The language L(E) represented by E is defined as

L() , L() , and L(c) c
L(E F) { wv | wE and vF
L(E + F) L(E)  L(F)
L(E*) { wn | wE and n 

Examples Let = {a, b}. Some examples of RE are:
L( + abaa + babb)={, abaa, babb}
L((ab)*)={, ab, abab, ababab,…},
L((ab + ba)*)={, ab, ba, abab, abba, baab,baba,…},
L(a((a + b)*)b)={ab, aab, abb, aaab, aabb, …}
L((a + b)* (a + b))={a, b, aa, ab, ba, bb, …} 14

Regular Expressions and Patterns
 It can be proved that

for every RE E there is a FA M s.t. L(M)=L(E), and
for every FA M there is a RE E s.t. L(E)=L(M).
 There does not always exist a RE E for a pattern  such that

L(E) = L(
 There does not always exist a pattern  for a FA M such that

L(E) = L(

 For a regular pattern we can construct a RE E such
that L(E) = L( by replacing

every symbol c in  with c, and
every variable in with (c1+…+ cn) (c1+…+ cn)*.

Example L(a((a + b)*(a + b)*)b) = L(axb)
15

Learning from Positive Data

16

Learning from Positive Data
Example
C = {aababbaaabaabbabababbb 

 In discussing learning from positive data, we
have to define it mathematically, or some simple
(trivial) solutions may always exist.
 The learning algorithm which always return prefix

tree automata.
 The learning algorithm which always return the

automaton accepting any strings.

17

Learning pattern languages
Example 1
C = {aababbaaabaabbabababbb 

Example 2
C = {baaabbbabb baaaaabbabaabb

bbaabab

18

Learning Patterns from Positive Data

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1
for n = 1 forever

receive en = sn , bn 
while (0  j  n

(ej = sj ,   and sj  L()) and
(ej = sj ,   and sj  L())

 = ’ for an appropriate ’; k ++
output 

19

Positive Presentations

 A presentation of L() is a infinite sequence
consisting of positive and negative example.

 A presentation  is positive if  consists only of
positive example < s, +> and any positive example
occurs at least once in .

1, 2, 3, ... e1, e2, e3, ...


L()

20

Which patterns should be chosen?
 Intuitively, choose a minimal language which contains

all of the positive examples at the moment.
 That is, avoid over-generalization!

L(i)

L()
the set of positive examples.

21

Analysis of Patterns (1)
Lemma 1 For every string s, there are only finite number

of pattern languages containing s.
Proof. If s L(), then |s|  ||.

Example The languages containing s = aab are
L(aab),
L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),
L(xyb), L(xay), L(axy), L(xxy), L(xy),
L(xyz),

22

Hasse Diagram
L(x)

L(xy)

L(xb) L(xyz) L(ax)

L(xyb) L(xxy) L(xay) L(axy)

L(xab) L(axb) L(xxb) L(aax)

L(aab)
23

Analysis of Patterns (2)
Example  = axxbbyaa

Laxxbbyaa
aaabbaaaaaabbbaa abbbbaaa abbbbbaa,

aaaaabbaaaaaaaabbbaa aababbbaaa
aababbbbaa,…, aabaaabaabbbbbababaa,…}

 Using examples as long as  :
aaabbaaaaaabbbaa abbbbaaa abbbbbaa

{(x,a), (y,a)} {(x,a), (y,b)} {(x,b), (y,a)} {(x,a), (y,b)}

We can know that the 2nd, 3rd, The variable at the 6th
and 6th positions must be position is different from
variables. those at the 2nd and 3rd. 24

Analysis of Patterns (3)
 Any language L(’) containing the four strings must be a

superset of L().

aaabbaaaaaabbbaa abbbbaaa abbbbbaa
{(x,a), (y,a)} {(x,a), (y,b)} {(x,b), (y,a)} {(x,a), (y,b)}

 If ’ and  are of same length, ’ has more variables than 
 If ’ is shorter than , ’ has at least one variable with which

some substring of longer than 2 must be replaced.

25

Characteristic Set of L()

 Let  be a pattern which contains variables x1, x2, ..., xn.
Consider the following substitutions:

a = {(x1, a), (x2, a), ..., (xn, a)},
b = {(x1, b), (x2, b), ..., (xn, b)},
1 = {(x1, a), (x2, b), ..., (xn, b)},
…
n = {(x1, b), (x2, b), ..., (xn, a)}

 The set {pa, pb , p1, pn} is a characteristic set of
L().

26

Anti-Unifcation of Strings
 For a set C of stings of same length

s1 = c11 c12…c1i …c1k

s2 = c21 c22…c2i…c2k

…
sn = cn1 cn2…cnj…cnk

the anti-unification of C is a pattern
 = c11c21…cn1c12c22…cn2c1kc2k…cnk

where
c1c2…cn= c if c1 = c2 = … = cn = c

x(c1c2…cn) otherwise.
and c1c2…cnis the “index” of c1c2…cn. 27

In Theoretical Form
Lemma 2 Let 1, 2,…,n be patterns. If the language

L(k) is minimal in {L(1), L(2),…, L(n) }, then k is
one of the longest patterns in the list.

Lemma 3 Let 1 and 2 be patterns of same length. Then
L(1)  L(2) if and only if 2=1.

Note If we do not assume 1 and 2 be patterns of same
length, then it is not decidable whether or not
L(1)  L(2).

28

Which pattern should be chosen?
 Let C be a set of (positive) examples
1. Select all shortest examples.
2. Look for one of the minimal patterns between x

(a singleton variable) and the anti-unifier of the
shortest examples, and return it.

Note: If we only follow the identification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples
but this might not seem “learning”.

29

Positive and Negative examples

L() : a language represented
with a pattern 
 a positive example on L() :

< s, +> for x  L()
a negative example on L() :

< s, > for x  L()

e1, e2, e3, ...

L()



positive
examples

negative examples

30

Positive presentations

 A presentation of L() is a infinite sequence
consisting of positive and negative example.

 A presentation  is positive if  consists only of
positive example < s, +> and any positive example
occurs at least once in .

1, 2, 3, ... e1, e2, e3, ...


L()

31

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(n) = L()

1, 2, 3, ... e1, e2, e3, ...

32

 A learning algorithm A EX-identifies a class C of
languages in the limit from psoitive presentations if
A EX-identifies every language in C in the limit from
positive presentations.

 A learning algorithm A BC-identifies a class C of
languages in the limit from positive presentations if
A BC-identifies every language in C in the limit from
positive presentations.

Identification in the limit [Gold]

33

Theorem The revised algorithm of Learn-pattern with the
minimal language strategy EX-identifies the class of all
pattern languages in the limit from positive presentations.

 The minimal language strategy means that when revising
conjecture  a pattern generating a minimal language for
positive data is chosen as the “appropriate” pattern.

Identification of patterns

34

Linear Patterns
 When we are learning only linear patterns, the shortest

linear patterns can be found by using the dynamic
programming.
 The algorithm is a modification of that for finding LCS

“longest common subsequences” or edit distance.
b ba a b

a

b

b

35

A Negative Result
.Theorem [Gold] There is no learning algorithm which

identifies any regular language from positive data.

 Note that a regular language is a formal language which
is accepted by a finite state automaton. It is also
represented in a regular expression.

Theorem [Gold] There is no learning algorithm which
identifies any regular expression from positive data.

36

A Negative Result (2)

e1, e1, …, e 2,...

N1+1

 We construct a positive presentation  of L in the
following manner.

 Let e1 be a string in L. Since the set {e1 } is also in C and
A must identify {e1}. So the first N1 examples of  are
all E1 , until “A identifies {e1}.”

h1,h2,h3,..., g1, g1, …

N1 n > N1 hn = g1 and L(g1) = {e1}

37

A Negative Result (3)
 Let the (N1+1)-th example be e2 which is different from

e1 .
 Since C contains {e1, e2}, the learning algorithm A

identifies {e1, e2} in the limit.

N1 n > N2 > N1 gn = g2 and {e1, e2}

e1,e1,... e2,..., e3,...

N1+1

h1, h2,..., g1,...,
g2 ,...,

N2+1

38

A Negative Result (4)
 Let the (N2+1)-th example be e3 which is different from

both of e1 or e2.
 Since C contains {e1, e2 ,e3}, A identifies {e1, e2 , e3} in

the limit.

N3 n >N3 > N2> N1 hn = g3 and L(g3)={E1, E2 , E3}

 The language L ={e1, e2 , e3 , e4,…} is a infinite and A
cannot identify L.

39

Reference
 M. Gold : Language Identification in the Limit,

Information and Control, 10, 447-474 (1967).

 D. Angulin : Inductive Inference of Formal
Languages from Positive Data, Information and
Control, 45, 117-135 (1980).

40

Defining languages with patterns

 A language defined with a pattern  is
{ = for some non-empty grounding substitution }

The language is denoted by L().
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbbabb baabb bbaab
baaaabbaaabbbaabab babbbb
bbaaabbbaabbbbababbbbbbb

41

