Computational Learning Theory

!'- Learning Patterns (Monomials)

Akihiro Yamamoto LUK E &

http://www 1ip.ist.1.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

i Formal Languages

= X : a finite set of symbols and called an alphabet

= X" : the set of all finite strings consisting of the symbols
n X.
= An empty string is denoted by «.
s XT=2"— {g}
= A formal language L on X 1s a subset of X*.
Example
> =1{a, b}
>*={g, a, b, aa, ab, ba, bb, aaa, aab,... }
L = {aab, abb, aaab, aabb, abab, abbb,... }

i Identification in the limit [Gold]
%{, e, €, €p... HEp &

= A learning algorithm A EX-1dentifies L(x) in the limit
from positive presentations 1f
for any positive presentation o= ¢€,, €,, €, ... of L(7) and
the output sequence 7, 7, 7;, ... of A, there exists N
such that foralln>N 7= 7" and L(7") = L(7)

= A learning algorithm A BC-identifies L(7) in the limit
from positive presentations 1f
for any positive presentation o= ¢€,, €,, €, ... of L(7) and

the output sequence 7,, 7, 7;, ... of A, there exists N
such that for all n > N 7z=-7>and L(7,) = L(7)

N

TT\s Ty T3y ...

i Patterns (Monomials)

m [et X be a countable set of variables
s Assuming > N X=

= A pattern z1s an element of (2 U X)*
= That is, a pattern is a string consisting of symbols and variables.

Example
X=1{a,b}, X=1{xy,..}
axb, axbbya, aaxbybxa.,...

= We sometime assume that every variable in a pattern 1s
indexed, in the ordering of its first occurrence.

¥ =1{a, b}, X={X, X,, X3,...}
ax,b, ax,bbx,a, aax;bx,bxa....

i Defining languages with patterns

= A language defined with a pattern 7 1s
{o | o=n6 for some non-empty grounding substitution & }
The language 1s denoted by L(7).

Examp!

1C

_(axb) = {aab, abb, aaab, aabb, abab, abbb,... }
_(ayb) = {aab, abb, aaab, aabb, abab, abbb,... }
_(bxaxb) = {baaab, bbabb,

Daaaaab, babaabb,bbaabab bbbabbb,
Daaaaaaab,...}

L(bxayb) = {baaab, baabb, baaaab, baaabb, baabab.,...

pbaab, bbabb,bbaaab, bbaabb, bbabab,...
naaaab, baaabb,baaaaab, baaaabb....
obaaab, bbaabb,bbaaaab, bbaaabb,...} s

i Substitution (1)

= A substitution 1s a set of pairs
9:{ (XDTI): (Xzafz)a "o (XnDTn) }
where X, X5, ..., X, are distinct variables and
7Ty, 7, ...y 7T, are patterns.
= Applying a substitution &to a pattern 7 1s replacing every
variable X; in 7z with z; simultaneously.
The result is denoted by 76.
Example
01 :{ (Xa bba)a (ya ba) }
02 :{ (Xa bya)a (ya ayb) }
bxaxb g, = bbbaabbab, bxaxbé, = bbyaabyab,
axbbyag, = abbabbbaa, axbbyad, = abyabbayba

6

i Substitution (2)

= A substitution 8={ (X;,77), (X5, %), ..., (X, 7)) } 1S non-
empty ifall of 7, 7, ...,7;are n (X LU X)™,

= A substitution @ grounds a pattern 7 if 7 8 €X*. Such 6
is called a grounding substitution for 7.

= A substitution ={ (X;, ¥,), (X5, ¥5), -.., Xy, ¥p,) } 1S

variable renaming 1f'y,, Y,, ..., Y, are distinct varaibles.
= We regard two patterns equivalent when each one is obtained
from the other by renaming variables.
Examples
Two patterns axb and ayb are equivalent, and they are also
equivalent to ax;b.
Two patterns aaxbxybxa and aaybxbya are equivalent,
and they are also equivalent to aazbwbza and aax;bx,bx;a.

i Learning pattern languages

Example 1
C = {aab, abb, aaab, aabb,abab, abbb }
D = {a, b, bbbb, abba, baaaaba, babbb}

Example 2

C = {baaab, bbabb, baaaaab,babaabb, bbaabab}
D = {a, b, bbbb, abb, baaaaba, babbb}

i The learning algorithm /earn-patterns

s Fix an effective enumeration of patterns on 2 U X :
72.]1 72-21 ey

k=1, 7=,
for n=1 forever
receive €, =(S,, b,)
while (0<3J<n
(6;=(sj,+)ands; ¢ L(7)) and
(&j=(Sj, —)ands; € L(n))
T= 1 ; K+t
output 7,

i The learning algorithm /earn-patterns

s Fix an effective enumeration of patterns on 2 U X :
72.]1 72-21 ey

k=1, 7=,
for n=1 forever
receive €, =(S,, b,)
while (0<3J<n
(6;=(sj,+)ands; ¢ L(7)) and
(&j=(Sj, —)ands; € L(n))
7= for an appropriate 7’ ; K ++
output 7,

10

+

Patterns v.s. Finite state automata

11

i Patterns and FAs

There does not always exist a FA M for a pattern © such
tﬁlat L(M) = L(7x).

la

= There does not always exist a pattern 1 fora FA M
such that L(M) = L(7).

A pattern r1s regular 1f each variable 1n 7 occurs only
once in .

Example A pattern bxayb is regular, but bxaxb is not.

= For a regular pattern 7 there 1s a FA M such that L(M) =
L(7).

12

i Regular Expressions (1)

= Mathematically, a regular expression is defined as a
expression constructed of

constants: €, &, and ¢ for every C in X
operators ; =, +, *

Examples Let 2 = {a, b}. Some examples of RE are:
abaa, a + b, a*, (ab)*,
¢ + abaa + babb, (ab + ba)*,
a((a+b)*)b,(a+b)*(a+b)

13

i Regular Expressions (2)

= The language L(E) represented by E 1s defined as
_(g) ={¢}, L(D)=, and L(c) ={c},
(EF)={wv|weE and veF},
(E+F)=L(E) u L(F),
(E*)={w"|weEand n > 0}.

Examples Let £ = {a, b}. Some examples of RE are:
_(g + abaa + babb)={¢, abaa, babb}
_((ab)*)={¢, ab, abab, ababab, ...},

_(a((a + b)*)b)={ab, aab, abb, aaab, aabb, ...}
_((a+b)*(a+b)={a, b, aa, ab, ba, bb, ...}

_((ab + ba)*)={¢, ab, ba, abab, abba, baab,baba....

14

i Reqgular Expressions and Patterns

= It can be proved that
for every RE E there i1s a FA M s.t. L(M)=L(E), and
for every FA M there 1s a RE E s.t. L(E)=L(M).

= There does not always exist a RE E for a pattern 7 such that
L(E) = L(~n).
= There does not always exist a pattern © for a FA M such that
L(E) = L(~n).
= For a regular pattern 7, we can construct a RE E such
that L(E) = L(x), by replacing
every symbol € in 7 with ¢, and
every variable in 7 with (¢;+...+c¢c,) (¢,+...+C.)*.

Example L(a((a + b)*(a + b)*)b) = L(axb)

15

+

Learning from Positive Data

16

i L earning from Positive Data

Example

C = {aab, abb, aaab, aabb,abab, abbb }

= In discussing learning from positive data, we
have to define it mathematically, or some simple
(trivial) solutions may always exist.

= The learning algorithm which always return prefix
tree automata.

= The learning algorithm which always return the
automaton accepting any strings.

17

i Learning pattern languages

Example 1
C = {aab, abb, aaab, aabb,abab, abbb }

Example 2
C = {baaab, bbabb, baaaaab,babaabb,

bbaabab}

18

i Learning Patterns from Positive Data

/‘/1’ /‘/2,!!!,

k=1, 7=,
for n=1 forever
receive €, =(S,, b,)
while (0<3J<n
(&;=(Sj, +)ands; ¢ L(n)) and—
— e =S and-Sre A —
= 7 for an appropriate 7’ ; K ++

output 7
19

i Positive Presentations

I

2N

%{A‘ e, &, e, ...
_Z*

= A presentation of L(7x) 1s a infinite sequence
consisting of positive and negative example.

= A presentation o is positive if o consists only of

positive example < S, +> and any positive example
occurs at least once 1n o.

20

i Which patterns should be chosen?

s Intuitively, choose a minimal language which contains
all of the positive examples at the moment.

= That 1s, avoid over-generalization!

L(7;)

the set of positive examples.

21

i Analysis of Patterns (1)

Lemma | For every string S, there are only finite number
of pattern languages containing S.

Proof. If s eL(7x), then |s| > |7]|.

Examp!
_(aa
_(Xa

e The languages containing S = aab are

D),
D), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),

-(XyD), L(xay), L(axy), L(xxy), L(xy),
_(XyZ)D

22

i Hasse Diagram

L(X)
L(xy)
/\

L(xb) L(Xyz) L(ax)

L(xyb) L(XXy) L(xay) L(axy)
T

L(xab) L(axb) L(xxb) L(aax)
T~ —

L(aab)

23

i Analysis of Patterns (2)

Example © = axxbbyaa
L (axxbbyaa)
={aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa,
aaaaabbaaa, aaaaabbbaa, aababbbaaa,
aababbbbaa,..., aabaaabaabbbbbababaa,...}

s Using examples as long as 7 :

aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa
O=1{(x,2), (y,a)} ={(x,a), (y,b)} &={(x,b), (y,a)} 6’@{(&6), (y.b)}
(I =
We can know that the 2nd, 3rd, The variable at the 6th

and 6th positions must be position 1s different from
variables. those at the 2nd and 3rd. |,,

’L Analysis of Patterns (3)

= Any language L(n’) containing the four strings must be a
superset of L(m).

aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa
91:{()(93)9 (yaa)} ‘92:{(X9a)9 (yab)} 03:{(X9b)9 (yaa)} 94:{(X9a)9 (yab)}

= If 7’ and & are of same length, 7’ has more variables than m.
= [f ©’ 1s shorter than m, ©’ has at least one variable with which
some substring of w longer than 2 must be replaced.

25

i Characteristic Set of L(n)

= Let © be a pattern which contains variables X, X, ..., X..

Consider the following substitutions:

(9a — {(Xb a)a (Xza a)a A (Xna a)}a
eb — {(le b)a (X2> b)a A (Xna b)}a
O = {(le a)a (X2> b)a e (Xna b)}a

Gn — {(le b)a (X2> b)a cee (Xm a)}

= The set {p&,, pb,, Poy, ..., Po,} 1s a characteristic set of
L(m).

26

Anti-Unifcation of Strings

» For a set C of stings of same length

S1 7 GGy {Ci - -Cp
Sz — C21C22.ocC2ioooC2k

Sn — Cnl an...an...an
the anti-unification of C 1s a pattern

1 =Y(Cy1Cy1---Ca)¥(C12C---Crp) .o Y(CyiCox---Cry)
where

y(clcz...cn)={ C ifc,=¢c,=...=C,=C

Xcl1c2...cn) otherwise.

and 1(C,C,...C,) 1s the “index” of c,C,...C,. .

i In Theoretical Form

Lemma 2 Let m, m,,..., 7, be patterns. If the language
L(7) 1s minimal in {L(7,), L(),..., L(x) }, then 7 1s
one of the longest patterns in the list.

Lemma 3 Let 7, and 7, be patterns of same length. Then
L(7;) < L(m) 1if and only 1if 7,0 =1,.

Note If we do not assume 7; and 7, be patterns of same
length, then 1t is not decidable whether or not

L(m) < L(m,).

28

i Which pattern should be chosen?

= Let C be a set of (positive) examples

1. Select all shortest examples.

2. Look for one of the minimal patterns between X
(a singleton variable) and the anti-unifier of the
shortest examples, and return it.

Note: If we only follow the 1dentification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples

but this might not seem “learning”. .

i Positive and Negative examples
%¢. ela e29 e39 ‘ ﬁ "a\\

NN

L(7) : a language represented
with a pattern 7
= a positive example on L(7) :
<s,+>for X € L(n)
a negative example on L(7) :
<s,—for X € L(n)

positive
examples

negative examples

30

i Positive presentations

I

2N

%{A‘ e, &, e, ...
_Z*

= A presentation of L(7x) 1s a infinite sequence
consisting of positive and negative example.

= A presentation o is positive if o consists only of

positive example < S, +> and any positive example
occurs at least once 1n o.

31

i Identification in the limit [Gold]
%{, e, €, €p... HEp &

= A learning algorithm A EX-1dentifies L(x) in the limit
from positive presentations 1f
for any positive presentation o= ¢€,, €,, €, ... of L(7) and
the output sequence 7, 7, 7;, ... of A, there exists N
such that foralln>N 7= 7" and L(7") = L(7)

= A learning algorithm A BC-identifies L(7) in the limit
from positive presentations 1f
for any positive presentation o= ¢€,, €,, €, ... of L(7) and

the output sequence 7,, 7, 7;, ... of A, there exists N
such that for all n > N 7z=-7>and L(7,) = L(7)

N

TT\s Ty T3y ...

32

i Identification in the limit [Gold]

= A learning algorithm A EX-identifies a class C of
languages in the limit from psoitive presentations 1f
A EX-identifies every language in C in the limit from
positive presentations.

= A learning algorithm A BC-identifies a class C of
languages in the limit from positive presentations 1f
A BC-identifies every language in C in the limit from
positive presentations.

33

i Identification of patterns

Theorem The revised algorithm of Learn-pattern with the
minimal language strategy EX-1dentifies the class of all
pattern languages 1n the limit from positive presentations.

The minimal language strategy means that when revising
conjecture 7 a pattern generating a minimal language for
positive data 1s chosen as the “appropriate” pattern.

34

i Linear Patterns

= When we are learning only linear patterns, the shortest
linear patterns can be found by using the dynamic
programming.
= The algorithm 1s a modification of that for finding LCS
“longest common subsequences” or edit distance.

b a b a b

O—O0—0—0—0—0
d v: VJ_\D >v

b |\

1%

%

v

35

i A Negative Result

[Gold] There 1s no learning algorithm which
1dentifies any regular language from positive data.

= Note that a regular language 1s a formal language which
1s accepted by a finite state automaton. It is also

represented 1n a regular expression.

[Gold] There 1s no learning algorithm which
identifies any regular expression from positive data.

36

i A Negative Result (2)

= We construct a positive presentation o of L in the
following manner.

= Lete, be a string in L. Since the set {e, } is also in C and

A must identify {e,}. So the first N, examples of o are
all E, , until “A 1dentifies {e,}.”

AN, V n>N, h, =g, and L(9,) = {e,}

)

\ h,,h,,hs,..., 0,0, ...

37

i A Negative Result (3)

= Let the (N,+1)-th example be e, which 1s different from
el .

= Since C contains {e,, &,}, the learning algorithm A
identifies {e,, &,} in the limit.

AN, ¥V .n>N,>N, g, =9, and {e,, &,}

& —~|f' el,el,... ez,..., 93,... ‘

-)
Y

N, +1
_ 4

%
17
N

h,, h,,..., Q...
05 »eees

38

i A Negative Result (4)

= Let the (N,+1)-th example be e; which 1s different from
both of e, or e,.

= Since C contains {e,, &, ,e;}, A identifies {e,, e, , e;} in
the limit.

AN; Vn>N;>N,> N, h, =g; and L(9;)={E,, E,, E;}

= The language L ={e,, e,, €5, €,,...} 1s a infinite and A
cannot 1dentify L.

39

i Reference

= M. Gold : Language Identification in the Limiut,
Information and Control, 10, 447-474 (1967).

= D. Angulin : Inductive Inference of Formal

Languages from Positive Data, Information and
Control, 45, 117-135 (1980).

40

i Defining languages with patterns

= A language defined with a pattern 7 1s
{o | o=n6 for some non-empty grounding substitution & }
The language 1s denoted by L(7).
Example
_(axb) = {aab, abb, aaab, aabb, abab, abbb,... }
_(ayb) = {aab, abb, aaab, aabb, abab, abbb,... }
_(bxaxb) = {baaab, bbabb,
baaaaab, babaabb.bbaabab bbbabbb,
Daaaaaaab,...}
L(bxayb) = {baaab, bbabb, baabb, bbaab,
baaaab, baaabb.baabab, babbbb.
bbaaab, bbaabb,bbabab, bbbbbb,...}

41

