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!'_ What about a pair of patterns?



® Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab,
abbb, aaabb, baaab}

abaaab, aabb, abab, abbb, aaabb <L (axb)
baaab, baaaaab, babaabb <L (bxyzb)

— >

L(xyzb)

L(axyb) L(bxyzb) babba
abaaab @aabb baaab
aabp abab baaaaab

abbb babaabb ababa




® Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab,
abbb, aaabb, baaab}

abaaab, aabb, abab, abbb, aaabb <L (axyb)
baaab, baaaaab, aaabb, babaabb <L (xaayb)

baaaaab

babaabb ababa




® Hasse Diagram

L(X)
L(xy)
/\
L(xb) L(Xyz) L(ax)
L(xyb) L(xxy) L(xay)  L(axy)
T
L(xab) L(axb) L(xxb)  L(aax)
T~ —

L(aab)



i How to Construct H.D.

= A string W 1s an instance of 7 1f W = 7 @ for some
substitution 6.

= A pattern r1s one step refinementof 7 if r=76
and @ 1s one of the three:
= 0={(X,Cc)} Replacing a variable with a symbol (character)

= O={(X, X;X,)} Spritting a variable with two new variables
s 0={(X,2), (Y,2z) } Unifying two variables into one
Example

X = XXy = XXy X3 = X X; X3 = X XD



i Substitution (1)

= A substitution 1s a set of pairs
9:{ (XDTI): (Xzafz)a "o (XnDTn) }
where X, X5, ..., X, are distinct variables and
7Ty, 7, ...y 7T, are patterns.
= Applying a substitution &to a pattern 7 1s replacing every
variable X; in 7z with z; simultaneously.
The result is denoted by 76.
Example
01 :{ (Xa bba)a (ya ba) }
02 :{ (Xa bya)a (ya ayb) }
bxaxb g, = bbbaabbab, bxaxbé, = bbyaabyab,
axbbyag, = abbabbbaa, axbbyad, = abyabbayba
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i Anti-Unification

= A pattern 7 1s an anti-unifier of the set C of positive
examples 1f C < L(7#), 1.e., for each positive example w,
w=r0.

= A pattern 7 1s a least common anti-unifier of C
if 7z 1s an anti-unifier of C and no 7~ <z satisfies C < L(7).

Examples
The least common anti-uinifer of abaaab and aaabb is axayb.
The least common anti-uinifer of konnichiwa and konbanwa
are konxwa.
The least common anti-uinifers of konnichiwa and konbannwa
are konxwa and koxnywa.



i Notes

s The operation of “making one step refinement” can be
regarded as “applying derivative”
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i The learning algorithm /earn-patterns

For n=1 forever
receive €, =(S,, b, )
compute the list | = 7, 7, , ..., m of all the
least common anti-unifications of the set of
positives C, = {s;: (S;,+)and =1, 2, ..., n}
for each 7 in the list |
if an ;= (§;, —) s.t. §; € L(7) 1s found
delete 7 from |
if | 1s not empty
return one 7;
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i In Theoretical Form

Lemma 2 Let m, m,,..., 7, be patterns. If the language
L(7) 1s minimal in {L(7,), L(),..., L(x) }, then 7 1s
one of the longest patterns in the list.

Lemma 3 Let 7, and 7, be patterns of same length. Then
L(7;) < L(m) 1if and only 1if 7,0 =1,.

Note If we do not assume 7; and 7, be patterns of same
length, then 1t is not decidable whether or not

L(m) < L(m,).
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i Which pattern should be chosen?

= Let C be a set of (positive) examples

1. Select all shortest examples.

2. Look for one of the minimal patterns between X
(a singleton variable) and the anti-unifier of the
shortest examples, and return it.

Note: If we only follow the 1dentification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples

but this might not seem “learning”. N



® Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab,
abbb, aaabb, baaab}

abaaab, aabb, abab, abbb, aaabb <L (axb)
baaab, baaaaab, babaabb <L (bxyzb)

— >

L(xyzb)

L(axyb) L(bxyzb) babba
abaaab @aabb baaab
aabp abab baaaaab

abbb babaabb ababa




® Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab,
abbb, aaabb, baaab}

abaaab, aabb, abab, abbb, aaabb <L (axyb)
baaab, baaaaab, aaabb, babaabb <L (xaayb)

baaaaab

babaabb ababa
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® Downward Coverset Algorithm

Given a data set C
For each minimally common anti-unifier © of C
For each a pair &,, m, of patterns just beneth & in the
Hasse Diagram
if L(m,) < C — L(m,) then
make minimally common anti-unification =’
of C n L(m,)
and

minimally common anti-unification t,’of C — L(m,)
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!'_ Correctness of Learning Algorithms
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i Positive and Negative examples
%¢. ela e29 e39 ‘ ﬁ "a\\

NN

L(7) : a language represented
with a pattern 7
= a positive example on L(7) :
<s,+>for X € L(n)
a negative example on L(7) :
<s,—>for x ¢L(7)

positive
examples

negative examples
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Abstract Classification

= A half-plane P which contains C (yes) and excludes D
(no) 1s to be learned

= The half-plane P 1s represented as a pair (w, ¢) which
means the linear inequation (w, X) + ¢ > 0.

s Let C(p)={Xx € R"| p(X) } for a predicate p.
Then the search space (version space) 1s
C={CAx.((w,X)+Cc>0))|weR", ceR"}.
The set of parameter s are from
H={w,c)|]we R",ceR"}.
= The training examples are provided as the sets C and D.

= A learning algorithm 1s provided.
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i Typical evaluation method

= A learning algorithm A 1s evaluated with test data as
follows.

Stepl. Let C. are set of all positive data and D. be are all

negatives.

Step 2. Select subsets C i, © Cx and Dy © D for

training.

Step 3. Apply A to the pair C ;.o and D, and obtain a

rule f.

Step 4. Select subsets C,; and D, make a confusion matrix.

Step 5. Calculate some measures from the confusion matrix.
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Confusion Matrix

= Every data 1s represented as a pair X = <s, p>
p=+ifseCandp=—-1fse D

(::test [:)test

{se C D, | f(s)=11} |true positive |false positive

test

positive

{se C.¢ D,y f(s)=01} |false negative |true negative

test

negative

21




i Measures

= Accuracy | TP |+ | TN |
| TP |+ |FP|+| TN |+ | FN|
= Error rates 1- Accuracy
= Precision (positive predictive rate)
| TP |
| TP |+ | FP |

= Recall (coverage, true-positive rate,

sensitivity) | TP

| TP | + | FN |
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When learning is correct?

= Every data 1s represented as a pair X = <s, p>
p=+1fseCandp=—-1fseD

Ctest

{Se C UDtCStl f(S) — 1 }

test

positive

{Se C UDtCStl f(S) — O }

test

negative
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i Comparison with an Unknown Function

= Assuming an unknown discriminant function f. such that
C.={x=<w,1> | f.(w)=1}
D.={x=<w,1> | f.(w)=0}
we evaluate the learning algorithm A by comparing 1ts
output f with f. .

= If every function f that we treat is represented as a
parameter p, we compare pP for f and p. for f. .

= Every linear inequation (w, X) + ¢ > 0 1s represented as a
parameter vector (W, C).

= We evaluate A with comparing (w, €) and (W, C.).
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i Correctness with Unknown Functions (1)

= Assuming an unknown discriminant function f. ,
we could say that the learning algorithm A 1s correct 1f
the output f of A becomes nearer f. when more data are
fed to A.
= Mathematically, consider a infinite sequence of training
data sets (C,, D,), (C,, D,), (C,, D,),... such that
C,cC,cC,c...cCiand
D,cD,cD,c... © D..
Let f; be the output of A for C, and D.;.
Then the algorithm A is correct if || f; — f« || > 0 for any of

such sequences. 55



Correctness with Unknown Functions (2)

= A similar definition of correctness could be defined:
If the learning algorithm A 1is correct 1f
A outputs f. whenever an enough amount of training data
are fed to A.
= Mathematically, consider a infinite sequence of training
data sets (C,, D)), (C,, D,), (C;, D5), ... such that
C,cC,cC;c...cCiand
D,cD,cD;c..cDx.
Let f; be the output of A for C, and D.;.
Then the algorithm A is correct if for each of such

sequences, there exists an N such that || f. —f. || =0 for
alln > M.
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i Estimation and Learning

Estimation 1n statistics means to infer the value of
parameters from examples.

We assume an unknown value of 8.

The parameter @ affects the distribution of D(6), and
only finite number of data are coming from the set.

We expect that, more data from D(6), better conjecture
&" could be obtained.

The conjecture 6 1s (statistically) consistent 1f
lim ., E(0") =260
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Correctness of Learning

!'_ Patterns
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i Examples on L( )

= We assume that, for an unknown pattern 7.,
C. 1s a finite set of positive examples on L(7.) and
D. 1s a finite set of negative examples on L( ).

= a positive example on L(7) :
<X, +>for X € L(7)

= anegative example on L(7) :
<X, —> for x ¢ L(n)

%k

L(7)

positive
examples

negative examples
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i Question

s If we give more and more (negative and positive)
examples on L(z) to an learning algorithm, does it
eventually conjecture the unknown 7z ?

= We have to give mathematical definitions of

= giving more and more examples, and
= Or giving examples many enough
= conjecturing  eventually.

—z*
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i Assumption

= Without loss of generality, we may assume that learning
algorithm takes examples 1n C. and D. one by one.

= In the situation that both C; and D; grow, we assume that
an infinite sequence o of strings marked with either + or
—, and some truncation of o corresponds to C, and D;.

Example
o : <ab,+>, <aab,+>, <bbb,—>, <aaab.+>, <abba,—>|..

C, = {ab, aab, aaab},
D, = {bbb, abba}.
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i Presentations

Definition A prese

ntation of L(7) 1s a infinite sequence

G < S()9 p0>9 < S]a pl >9 < 829 p2>9
where S; €X* and p;=+ or —.

s <SS, +> 1is a positive example

= <S, —>1s a negative example

u G[n] =< SO: p0>9
Definition A prese
any X € L(7) ap,

at least once and

< Sla pl >9 < 829 p2 >9 R < Sn—19 pn—l >
ntation o 1s complete 1f

pears In o as a positive example < X, +>

any X ¢ L(7x) ap
at least once.

pears In o as a negative example < X, —>
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Identification in the limit [Gold]

[
Z 2\ /
ic&ﬁ_% 4 Xl’ X2, X3, cee ‘ O 72-1, 72-2, 72-3, coe

= A learning algorithm A EX-1dentifies L(x) in the limit
from complete presentations 1f
for any complete presentation o= X,, X, X3, ... of L(7)
and the output sequence 7, 7,, 7, ... of A, there exists N
such that foralln>N z= 7" and L(7") = L(#)
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i The learning algorithm /earn-patterns

For n=1 forever
receive €, =(S,, b, )
compute the list | = 7, 7, , ..., m of all the
least common anti-unifications of the set of
positives C, = {s;: (S;,+)and =1, 2, ..., n}
for each 7 in the list |
if an ;= (§;, —) s.t. §; € L(7) 1s found
delete 7 from |
if | 1s not empty
return one 7;
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i Identification of patterns

Theorem The algorithm of Learn-pattern EX-identifies the
class of all pattern languages in the
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i Positive presentations

I
Z N\ /
%*,. e, &, e, ...
— 2*

= A presentation o is positive 1f o consists only of

positive example < S, +> and any positive example
occurs at least once 1n o.

= A presentation o 1s complete 1f

any X € L(7) appears in o as a positive example
< s, +> at least once.
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i The learning algorithm /earn-patterns

For n=1 {forever
receive €, =(S,, b, )
compute the list | = 7, 7, , ..., m of all the
least common anti-unifications of the set of

positives C, = {s;: (;,+)and =1, 2, ..., n}

return one 7;
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i Identification of patterns

Theorem The revised algorithm of Learn-pattern EX-
1dentifies the class of all pattern languages in the limait
from positive presentations.
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