
Computational Learning Theory
Extending Patterns with the Correctness
of Learning Algorithms

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Contents
 What about a pair of patterns?
 Correctness of Learning Algorithms

2

What about a pair of patterns?

3

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)



L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)

4

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)



5

Hasse Diagram

L(x)

L(xy)

L(xb) L(xyz) L(ax)

L(xyb) L(xxy) L(xay) L(axy)

L(xab) L(axb) L(xxb) L(aax)

L(aab)
6

How to Construct H.D.
 A string w is an instance of if w   for some

substitution 
 A pattern is one step refinement of if  

and  is one of the three:
 (x, c)} Replacing a variable with a symbol (character)
 (x, x1x2)} Spritting a variable with two new variables
 (x, z)(y, z) } Unifying two variables into one

Example
x  x1x2  x1x2 x3  x1x1 x3  x1x1b

7

Substitution (1)

 A substitution is a set of pairs
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and
1, 2, …, n are patterns.

 Applying a substitution  to a pattern  is replacing every
variable xi in  with i simultaneously.
The result is denoted by  .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1  abbabbbaaaxbbya2 abyabbayba

8

Anti-Unification
 A pattern is an anti-unifier of the set C of positive

examples if C L, i.e., for each positive example w,
w=.

 A pattern is a least common anti-unifier of C
if  is an anti-unifier of C and no ’ satisfies C L’.

Examples
The least common anti-uinifer of abaaab and aaabb is axayb.
The least common anti-uinifer of konnichiwa and konbanwa

are konxwa.
The least common anti-uinifers of konnichiwa and konbannwa

are konxwa and koxnywa.

9

Notes
 The operation of “making one step refinement” can be

regarded as “applying derivative”

10

The learning algorithm learn-patterns

For n = 1 forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the
least common anti-unifications of the set of
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j) is found
delete j from l

if l is not empty
return one i

11

In Theoretical Form
Lemma 2 Let 1, 2,…,n be patterns. If the language

L(k) is minimal in {L(1), L(2),…, L(n) }, then k is
one of the longest patterns in the list.

Lemma 3 Let 1 and 2 be patterns of same length. Then
L(1)  L(2) if and only if 2=1.

Note If we do not assume 1 and 2 be patterns of same
length, then it is not decidable whether or not
L(1)  L(2).

12

Which pattern should be chosen?
 Let C be a set of (positive) examples
1. Select all shortest examples.
2. Look for one of the minimal patterns between x

(a singleton variable) and the anti-unifier of the
shortest examples, and return it.

Note: If we only follow the identification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples
but this might not seem “learning”.

13

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)



L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)

14

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)



15

Downward Coverset Algorithm
Given a data set C
For each minimally common anti-unifier of C

For each a pair 1, 2 of patterns just beneth in the
Hasse Diagram

if L() C – L(1) then
make minimally common anti-unification 1’
of C  L(1)
and

minimally common anti-unification 2’of C – L(1)

16

Correctness of Learning Algorithms

17

Positive and Negative examples

L() : a language represented
with a pattern 
 a positive example on L() :

< s, +> for x  L()
a negative example on L() :

< s, > for x L()

e1, e2, e3, ...

L()



positive
examples

negative examples

18

Abstract Classification
 A half-plane P which contains C (yes) and excludes D

(no) is to be learned
 The half-plane P is represented as a pair (w, c) which

means the linear inequation (w, x) + c > 0.
 Let C(p)={x  Rn | p(x) } for a predicate p.

Then the search space (version space) is
C = {C( x.((w, x) + c > 0)) | w  Rn , c  Rn }.

The set of parameter s are from
H = { (w, c) | w  Rn , c  Rn }.

 The training examples are provided as the sets C and D.
 A learning algorithm is provided.

19

Typical evaluation method

 A learning algorithm A is evaluated with test data as
follows.

Step1. Let C* are set of all positive data and D* be are all
negatives.
Step 2. Select subsets Ctraining C* and Dtraining  D* for
training.
Step 3. Apply A to the pair Ctraining and Dtraining and obtain a
rule f.
Step 4. Select subsets Ctest and Dtest make a confusion matrix.
Step 5. Calculate some measures from the confusion matrix.

20

Confusion Matrix
 Every data is represented as a pair x = <s, p>

p = + if s C and p =  if s D

Ctest Dtest

{s CtestDtest| f(s) = 1 }
positive

true positive false positive

{s CtestDtest| f(s) = 0 }
negative

false negative true negative

21

Measures
 Accuracy | TP | + | TN |

| TP | + | FP | + | TN | + | FN |
 Error rates 1- Accuracy
 Precision (positive predictive rate)

| TP |
| TP | + | FP |

 Recall (coverage, true-positive rate,
sensitivity) | TP |

| TP | + | FN |
22

When learning is correct?
 Every data is represented as a pair x = <s, p>

p = + if s C and p =  if s D

Ctest Dtest

{s CtestDtest| f(s) = 1 }
positive

empty

{s CtestDtest| f(s) = 0 }
negative

empty

23

Comparison with an Unknown Function
 Assuming an unknown discriminant function f* such that

C* = { x = <w, 1> | f* (w) = 1 }
D* = { x = <w, 1> | f* (w) = 0 }

we evaluate the learning algorithm A by comparing its
output f with f* .
 If every function f that we treat is represented as a

parameter p, we compare p for f and p* for f* .
 Every linear inequation (w, x) + c > 0 is represented as a

parameter vector (w, c).
 We evaluate A with comparing (w, c) and (w*, c*).

24

Correctness with Unknown Functions (1)
 Assuming an unknown discriminant function f* ,

we could say that the learning algorithm A is correct if
the output f of A becomes nearer f* when more data are
fed to A.

 Mathematically, consider a infinite sequence of training
data sets (C0, D0), (C1, D1), (C2, D2),… such that

C0 C1 C2 C* and
D0 D1 D2 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if || fi – f* ||  0 for any of
such sequences. 25

Correctness with Unknown Functions (2)
 A similar definition of correctness could be defined:

If the learning algorithm A is correct if
A outputs f* whenever an enough amount of training data

are fed to A.
 Mathematically, consider a infinite sequence of training

data sets (C1, D1), (C2, D2), (C3, D3), … such that
C1 C2  C3 C* and
D1 D2  D3 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if for each of such
sequences, there exists an N such that || fi – f* ||  0 for
all n 

26

Estimation and Learning
 Estimation in statistics means to infer the value of

parameters from examples.
 We assume an unknown value of .
 The parameter  affects the distribution of D(), and

only finite number of data are coming from the set.
 We expect that, more data from D(), better conjecture
^ could be obtained.

 The conjecture ^ is (statistically) consistent if
lim n E(^) = 

27

Correctness of Learning
Patterns

28

Examples on L()
 We assume that, for an unknown pattern  *,
C* is a finite set of positive examples on L(*) and
D* is a finite set of negative examples on L(*).

 a positive example on L() :
< x, +> for x  L()

 a negative example on L() :
< x, > for x  L()

L()


positive
examples

negative examples

29

Question
 If we give more and more (negative and positive)

examples on L(*) to an learning algorithm, does it
eventually conjecture the unknown * ?

 We have to give mathematical definitions of
 giving more and more examples, and

 or giving examples many enough
 conjecturing  eventually.



L()

D*

C*

^  

30

Assumption
 Without loss of generality, we may assume that learning

algorithm takes examples in C* and D* one by one.
 In the situation that both Ci and Di grow, we assume that

an infinite sequence  of strings marked with either  or
and some truncation of  corresponds to Ci and Di.

Example
 : <ab,+>, <aab,+>, <bbb,>, <aaab,+>, <abba,>,…

Ci = {ab aabaaab
Di = {bbbabba

31

Presentations
Definition A presentation of L() is a infinite sequence
  < s0, p0 >, < s1, p1 >, < s2, p2 >, …
 where si  and pi=  or  

 < s, +> is a positive example
 < s, > is a negative example

 [n] = < s0, p0>, < s1, p1 >, < s2, p2 >, …, < sn1, pn1 >
Definition A presentation  is complete if

any x  L() appears in as a positive example < x, +>
at least once and
any x  L() appears in as a negative example < x, >
at least once.

32

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit
from complete presentations if
for any complete presentation  = x1, x2, x3, ... of L()
and the output sequence 1, 2, 3, ... of A, there exists N
such that for all n  N n= ’ and L(’) = L()

1, 2, 3, ... x1, x2, x3, ...

33

The learning algorithm learn-patterns

For n = 1 forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the
least common anti-unifications of the set of
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j) is found
delete j from l

if l is not empty
return one i

34

Theorem The algorithm of Learn-pattern EX-identifies the
class of all pattern languages in the

Identification of patterns

35

Positive presentations

 A presentation  is positive if  consists only of
positive example < s, +> and any positive example
occurs at least once in .

 A presentation  is complete if
any x  L() appears in as a positive example
< s, +> at least once.

1, 2, 3, ... e1, e2, e3, ...


L()

36

The learning algorithm learn-patterns

For n = 1 forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the
least common anti-unifications of the set of
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j) is found
delete j from l

if l is not empty
return one i

37

Theorem The revised algorithm of Learn-pattern EX-
identifies the class of all pattern languages in the limit
from positive presentations.

Identification of patterns

38

