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What about a pair of patterns?
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)



L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)



5



Hasse Diagram

L(x)

L(xy)

L(xb) L(xyz)                   L(ax)

L(xyb)          L(xxy)           L(xay)         L(axy)

L(xab)          L(axb)           L(xxb)         L(aax)

L(aab)
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How to Construct H.D.
 A string w is an instance of if w   for some 

substitution 
 A pattern is one step refinement of if  

and  is one of the three:
 (x, c)}  Replacing a variable with a symbol (character)
 (x, x1x2)} Spritting a variable with two new variables
 (x, z)(y, z) } Unifying two variables into one

Example
x  x1x2  x1x2 x3  x1x1 x3  x1x1b
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Substitution (1) 

 A substitution is a set of pairs 
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and 
1, 2, …, n are patterns. 

 Applying a substitution  to a pattern  is replacing every 
variable xi in  with i simultaneously. 
The result is denoted by  .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1  abbabbbaaaxbbya2 abyabbayba
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Anti-Unification
 A pattern is an anti-unifier of the set C of positive 

examples if C L, i.e., for each positive example w,   
w=.

 A pattern is a least common anti-unifier of C 
if  is an anti-unifier of C and no ’ satisfies C L’.

Examples
The least common anti-uinifer of abaaab and aaabb is axayb.
The least common anti-uinifer of konnichiwa and konbanwa

are konxwa.
The least common anti-uinifers of konnichiwa and konbannwa

are konxwa and koxnywa.
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Notes
 The operation of “making one step refinement” can be 

regarded as “applying derivative”  
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The learning algorithm learn-patterns 

For  n = 1  forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the 
least common anti-unifications of the set of 
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j ) is found
delete j from l

if l is not empty
return one i
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In Theoretical Form
Lemma 2 Let 1, 2,…,n be patterns. If the language 

L(k) is minimal in {L(1), L(2),…, L(n) }, then k is 
one of the longest patterns in the list.

Lemma 3 Let 1 and 2 be patterns of same length. Then  
L(1)  L(2) if and only if 2=1. 

Note If we do not assume 1 and 2 be patterns of same 
length, then it is not decidable whether or not 
L(1)  L(2).
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Which pattern should be chosen?
 Let C be a set of (positive) examples 
1.  Select all shortest examples.
2.  Look for one of the minimal patterns  between x

(a singleton variable) and the anti-unifier of the 
shortest examples, and return it. 

Note: If we only follow the identification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples
but this might not seem “learning”. 
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)



L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)


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Downward Coverset Algorithm
Given a data set  C
For each minimally common anti-unifier of C

For each a pair 1, 2 of patterns just beneth in the
Hasse Diagram

if L() C – L(1) then
make minimally common anti-unification 1’
of C  L(1)
and 

minimally common anti-unification 2’of C – L(1) 
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Correctness of Learning Algorithms
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Positive and Negative examples

L() : a language represented
with a pattern 
 a positive example on L() : 

< s, +> for  x  L()
a negative example on L() : 

< s, > for  x L()

e1, e2, e3, ... 

L()



positive 
examples

negative examples
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Abstract Classification
 A half-plane P which contains C (yes) and excludes D 

(no) is to be learned
 The half-plane P  is represented as a pair  (w, c) which 

means the linear inequation (w, x) + c > 0. 
 Let C(p)={x  Rn | p(x) } for a predicate p. 

Then the search space (version space) is 
C = {C( x.((w, x) + c > 0)) | w  Rn , c  Rn }.

The set of parameter s are from  
H = { (w, c) | w  Rn , c  Rn }. 

 The training examples are provided as the sets C and D.
 A learning algorithm is provided. 
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Typical evaluation method

 A learning algorithm A is evaluated  with test data as 
follows.

Step1. Let C* are set of all positive data and  D* be are all 
negatives.
Step 2. Select subsets Ctraining C*  and Dtraining  D* for 
training. 
Step 3. Apply A to the pair Ctraining and Dtraining and obtain a 
rule f.
Step 4. Select subsets Ctest and Dtest make a confusion matrix. 
Step 5. Calculate some measures from the confusion matrix. 
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Confusion Matrix
 Every data is represented as a pair x = <s, p>

p = + if s C and p =  if s D

Ctest Dtest

{s CtestDtest|  f(s) = 1 }
positive

true positive false positive

{s CtestDtest|  f(s) = 0 }
negative

false negative true negative
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Measures
 Accuracy            | TP | + | TN | 

| TP | + | FP | + | TN | + | FN | 
 Error rates    1- Accuracy
 Precision (positive predictive rate)

| TP | 
| TP | + | FP |  

 Recall (coverage, true-positive rate, 
sensitivity)     | TP | 

| TP | + | FN |  
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When learning is correct?
 Every data is represented as a pair x = <s, p>

p = + if s C and p =  if s D

Ctest Dtest

{s CtestDtest|  f(s) = 1 }
positive

empty

{s CtestDtest|  f(s) = 0 }
negative

empty
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Comparison with an Unknown Function
 Assuming an unknown discriminant function f* such that

C* = { x = <w, 1>   |  f* (w) = 1 }
D* = { x = <w, 1>   |  f* (w) = 0 }

we evaluate the learning algorithm A by comparing  its 
output f with f* .
 If  every function f that we treat is represented as a 

parameter p,  we compare  p for f and p* for f* .
 Every linear inequation (w, x) + c > 0 is represented as a 

parameter vector (w, c). 
 We evaluate A with comparing (w, c) and (w*, c*). 
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Correctness with Unknown Functions (1)
 Assuming an unknown discriminant function f* ,

we could say that the learning algorithm A is correct if 
the output f  of  A becomes nearer f* when more data are   
fed to A.

 Mathematically, consider a infinite sequence of training  
data sets  (C0, D0), (C1, D1), (C2, D2),… such that 

C0 C1 C2 C* and 
D0 D1 D2 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if || fi – f* ||  0 for any of
such sequences. 25



Correctness with Unknown Functions (2)
 A similar definition of correctness could be defined:

If the learning algorithm A is correct if 
A outputs f* whenever an enough amount of training data 

are fed to A. 
 Mathematically, consider a infinite sequence of training  

data sets  (C1, D1), (C2, D2), (C3, D3), … such that 
C1 C2  C3 C* and 
D1 D2  D3 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if for each of  such 
sequences, there exists an N such  that || fi – f* ||  0 for 
all n 
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Estimation and Learning
 Estimation in statistics means to infer the value of 

parameters from examples. 
 We assume an unknown value of . 
 The parameter  affects the distribution of  D(), and 

only finite number of data are coming from the set. 
 We expect that, more data from D(), better conjecture 
^ could be obtained. 

 The conjecture ^ is (statistically) consistent if 
lim n E(^) = 
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Correctness of Learning 
Patterns
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Examples on L() 
 We assume that, for an unknown pattern  *,
C* is a finite set of positive examples on L(*) and
D* is a finite set of negative examples on L(*).

 a positive example on L() : 
< x, +> for  x  L()

 a negative example on L() : 
< x, > for  x  L()

L()


positive 
examples

negative examples
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Question
 If we give more and more (negative and positive) 

examples on L(*) to an learning algorithm, does it  
eventually conjecture the unknown * ?

 We have to give mathematical definitions of
 giving more and more examples, and 

 or giving examples many enough
 conjecturing  eventually.



L()

D*

C*

^  
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Assumption 
 Without loss of generality, we may assume that learning 

algorithm takes examples in C* and D* one by one.
 In the situation that both Ci and Di grow, we assume that 

an infinite sequence  of strings marked with either  or 
and some truncation of  corresponds to Ci and Di. 

Example
 : <ab,+>, <aab,+>, <bbb,>, <aaab,+>, <abba,>,… 

Ci = {ab aabaaab
Di = {bbbabba
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Presentations
Definition A presentation of L() is a infinite sequence
  < s0, p0 >, < s1, p1 >, < s2, p2 >, …   
 where si  and pi=  or  

 < s, +>  is a positive example
 < s, > is a negative example

 [n] = < s0, p0>, < s1, p1 >, < s2, p2 >, …, < sn1, pn1 >
Definition A presentation  is complete if 

any x  L() appears in as a positive example < x, +> 
at least once and 
any x  L() appears in as a negative example < x, > 
at least once. 
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit 
from complete presentations if
for any complete presentation  = x1, x2, x3, ... of L() 
and the output sequence 1, 2, 3, ... of A,  there exists N
such that for all n  N  n= ’ and L(’) = L()

1, 2, 3, ... x1, x2, x3, ... 
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The learning algorithm learn-patterns 

For  n = 1  forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the 
least common anti-unifications of the set of 
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j ) is found
delete j from l

if l is not empty
return one i
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Theorem The algorithm of Learn-pattern EX-identifies the 
class of all pattern languages in the

Identification of patterns
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Positive presentations

 A presentation  is positive if  consists only of 
positive example < s, +> and any positive example 
occurs at least once in . 

 A presentation  is complete if 
any x  L() appears in as a positive example   
< s, +> at least once. 

1, 2, 3, ... e1, e2, e3, ...


L()
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The learning algorithm learn-patterns 

For  n = 1  forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the 
least common anti-unifications of the set of 
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j ) is found
delete j from l

if l is not empty
return one i
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Theorem The revised algorithm of Learn-pattern EX-
identifies the class of all pattern languages in the limit 
from positive presentations. 

Identification of patterns
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