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What about a pair of patterns?
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)



L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)
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Hasse Diagram

L(x)

L(xy)

L(xb) L(xyz)                   L(ax)

L(xyb)          L(xxy)           L(xay)         L(axy)

L(xab)          L(axb)           L(xxb)         L(aax)

L(aab)
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How to Construct H.D.
 A string w is an instance of if w   for some 

substitution 
 A pattern is one step refinement of if  

and  is one of the three:
 (x, c)}  Replacing a variable with a symbol (character)
 (x, x1x2)} Spritting a variable with two new variables
 (x, z)(y, z) } Unifying two variables into one

Example
x  x1x2  x1x2 x3  x1x1 x3  x1x1b
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Substitution (1) 

 A substitution is a set of pairs 
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and 
1, 2, …, n are patterns. 

 Applying a substitution  to a pattern  is replacing every 
variable xi in  with i simultaneously. 
The result is denoted by  .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1  abbabbbaaaxbbya2 abyabbayba
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Anti-Unification
 A pattern is an anti-unifier of the set C of positive 

examples if C L, i.e., for each positive example w,   
w=.

 A pattern is a least common anti-unifier of C 
if  is an anti-unifier of C and no ’ satisfies C L’.

Examples
The least common anti-uinifer of abaaab and aaabb is axayb.
The least common anti-uinifer of konnichiwa and konbanwa

are konxwa.
The least common anti-uinifers of konnichiwa and konbannwa

are konxwa and koxnywa.
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Notes
 The operation of “making one step refinement” can be 

regarded as “applying derivative”  
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The learning algorithm learn-patterns 

For  n = 1  forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the 
least common anti-unifications of the set of 
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j ) is found
delete j from l

if l is not empty
return one i

11



In Theoretical Form
Lemma 2 Let 1, 2,…,n be patterns. If the language 

L(k) is minimal in {L(1), L(2),…, L(n) }, then k is 
one of the longest patterns in the list.

Lemma 3 Let 1 and 2 be patterns of same length. Then  
L(1)  L(2) if and only if 2=1. 

Note If we do not assume 1 and 2 be patterns of same 
length, then it is not decidable whether or not 
L(1)  L(2).
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Which pattern should be chosen?
 Let C be a set of (positive) examples 
1.  Select all shortest examples.
2.  Look for one of the minimal patterns  between x

(a singleton variable) and the anti-unifier of the 
shortest examples, and return it. 

Note: If we only follow the identification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples
but this might not seem “learning”. 
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)



L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)
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Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)
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Downward Coverset Algorithm
Given a data set  C
For each minimally common anti-unifier of C

For each a pair 1, 2 of patterns just beneth in the
Hasse Diagram

if L() C – L(1) then
make minimally common anti-unification 1’
of C  L(1)
and 

minimally common anti-unification 2’of C – L(1) 
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Correctness of Learning Algorithms
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Positive and Negative examples

L() : a language represented
with a pattern 
 a positive example on L() : 

< s, +> for  x  L()
a negative example on L() : 

< s, > for  x L()

e1, e2, e3, ... 

L()



positive 
examples

negative examples
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Abstract Classification
 A half-plane P which contains C (yes) and excludes D 

(no) is to be learned
 The half-plane P  is represented as a pair  (w, c) which 

means the linear inequation (w, x) + c > 0. 
 Let C(p)={x  Rn | p(x) } for a predicate p. 

Then the search space (version space) is 
C = {C( x.((w, x) + c > 0)) | w  Rn , c  Rn }.

The set of parameter s are from  
H = { (w, c) | w  Rn , c  Rn }. 

 The training examples are provided as the sets C and D.
 A learning algorithm is provided. 
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Typical evaluation method

 A learning algorithm A is evaluated  with test data as 
follows.

Step1. Let C* are set of all positive data and  D* be are all 
negatives.
Step 2. Select subsets Ctraining C*  and Dtraining  D* for 
training. 
Step 3. Apply A to the pair Ctraining and Dtraining and obtain a 
rule f.
Step 4. Select subsets Ctest and Dtest make a confusion matrix. 
Step 5. Calculate some measures from the confusion matrix. 
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Confusion Matrix
 Every data is represented as a pair x = <s, p>

p = + if s C and p =  if s D

Ctest Dtest

{s CtestDtest|  f(s) = 1 }
positive

true positive false positive

{s CtestDtest|  f(s) = 0 }
negative

false negative true negative
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Measures
 Accuracy            | TP | + | TN | 

| TP | + | FP | + | TN | + | FN | 
 Error rates    1- Accuracy
 Precision (positive predictive rate)

| TP | 
| TP | + | FP |  

 Recall (coverage, true-positive rate, 
sensitivity)     | TP | 

| TP | + | FN |  
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When learning is correct?
 Every data is represented as a pair x = <s, p>

p = + if s C and p =  if s D

Ctest Dtest

{s CtestDtest|  f(s) = 1 }
positive

empty

{s CtestDtest|  f(s) = 0 }
negative

empty
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Comparison with an Unknown Function
 Assuming an unknown discriminant function f* such that

C* = { x = <w, 1>   |  f* (w) = 1 }
D* = { x = <w, 1>   |  f* (w) = 0 }

we evaluate the learning algorithm A by comparing  its 
output f with f* .
 If  every function f that we treat is represented as a 

parameter p,  we compare  p for f and p* for f* .
 Every linear inequation (w, x) + c > 0 is represented as a 

parameter vector (w, c). 
 We evaluate A with comparing (w, c) and (w*, c*). 
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Correctness with Unknown Functions (1)
 Assuming an unknown discriminant function f* ,

we could say that the learning algorithm A is correct if 
the output f  of  A becomes nearer f* when more data are   
fed to A.

 Mathematically, consider a infinite sequence of training  
data sets  (C0, D0), (C1, D1), (C2, D2),… such that 

C0 C1 C2 C* and 
D0 D1 D2 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if || fi – f* ||  0 for any of
such sequences. 25



Correctness with Unknown Functions (2)
 A similar definition of correctness could be defined:

If the learning algorithm A is correct if 
A outputs f* whenever an enough amount of training data 

are fed to A. 
 Mathematically, consider a infinite sequence of training  

data sets  (C1, D1), (C2, D2), (C3, D3), … such that 
C1 C2  C3 C* and 
D1 D2  D3 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if for each of  such 
sequences, there exists an N such  that || fi – f* ||  0 for 
all n 
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Estimation and Learning
 Estimation in statistics means to infer the value of 

parameters from examples. 
 We assume an unknown value of . 
 The parameter  affects the distribution of  D(), and 

only finite number of data are coming from the set. 
 We expect that, more data from D(), better conjecture 
^ could be obtained. 

 The conjecture ^ is (statistically) consistent if 
lim n E(^) = 

27



Correctness of Learning 
Patterns
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Examples on L() 
 We assume that, for an unknown pattern  *,
C* is a finite set of positive examples on L(*) and
D* is a finite set of negative examples on L(*).

 a positive example on L() : 
< x, +> for  x  L()

 a negative example on L() : 
< x, > for  x  L()

L()


positive 
examples

negative examples
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Question
 If we give more and more (negative and positive) 

examples on L(*) to an learning algorithm, does it  
eventually conjecture the unknown * ?

 We have to give mathematical definitions of
 giving more and more examples, and 

 or giving examples many enough
 conjecturing  eventually.



L()

D*

C*

^  
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Assumption 
 Without loss of generality, we may assume that learning 

algorithm takes examples in C* and D* one by one.
 In the situation that both Ci and Di grow, we assume that 

an infinite sequence  of strings marked with either  or 
and some truncation of  corresponds to Ci and Di. 

Example
 : <ab,+>, <aab,+>, <bbb,>, <aaab,+>, <abba,>,… 

Ci = {ab aabaaab
Di = {bbbabba
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Presentations
Definition A presentation of L() is a infinite sequence
  < s0, p0 >, < s1, p1 >, < s2, p2 >, …   
 where si  and pi=  or  

 < s, +>  is a positive example
 < s, > is a negative example

 [n] = < s0, p0>, < s1, p1 >, < s2, p2 >, …, < sn1, pn1 >
Definition A presentation  is complete if 

any x  L() appears in as a positive example < x, +> 
at least once and 
any x  L() appears in as a negative example < x, > 
at least once. 
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit 
from complete presentations if
for any complete presentation  = x1, x2, x3, ... of L() 
and the output sequence 1, 2, 3, ... of A,  there exists N
such that for all n  N  n= ’ and L(’) = L()

1, 2, 3, ... x1, x2, x3, ... 
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The learning algorithm learn-patterns 

For  n = 1  forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the 
least common anti-unifications of the set of 
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j ) is found
delete j from l

if l is not empty
return one i

34



Theorem The algorithm of Learn-pattern EX-identifies the 
class of all pattern languages in the

Identification of patterns
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Positive presentations

 A presentation  is positive if  consists only of 
positive example < s, +> and any positive example 
occurs at least once in . 

 A presentation  is complete if 
any x  L() appears in as a positive example   
< s, +> at least once. 

1, 2, 3, ... e1, e2, e3, ...


L()
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The learning algorithm learn-patterns 

For  n = 1  forever
receive en = sn , bn 
compute the list l = 1, 2 , …, k of all the 
least common anti-unifications of the set of 
positives Cn = {sj : sj ,   and j = 1, 2, …, n}
for each j in the list l

if an ej = sj ,   s.t. sj L(j ) is found
delete j from l

if l is not empty
return one i
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Theorem The revised algorithm of Learn-pattern EX-
identifies the class of all pattern languages in the limit 
from positive presentations. 

Identification of patterns

38


