
Computational Learning Theory
Extending Patterns with the Correctness
of Learning Algorithms

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Contents
 What about a pair of patterns?
 Correctness of Learning Algorithms

2

What about a pair of patterns?

3

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)

L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)

4

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)

5

Hasse Diagram

L(x)

L(xy)

L(xb) L(xyz) L(ax)

L(xyb) L(xxy) L(xay) L(axy)

L(xab) L(axb) L(xxb) L(aax)

L(aab)
6

How to Construct H.D.
 A string w is an instance of if w for some

substitution
 A pattern is one step refinement of if

and is one of the three:
 (x, c)} Replacing a variable with a symbol (character)
 (x, x1x2)} Spritting a variable with two new variables
 (x, z)(y, z) } Unifying two variables into one

Example
x x1x2 x1x2 x3 x1x1 x3 x1x1b

7

Substitution (1)

 A substitution is a set of pairs
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and
1, 2, …, n are patterns.

 Applying a substitution to a pattern is replacing every
variable xi in with i simultaneously.
The result is denoted by .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1 abbabbbaaaxbbya2 abyabbayba

8

Anti-Unification
 A pattern is an anti-unifier of the set C of positive

examples if C L, i.e., for each positive example w,
w=.

 A pattern is a least common anti-unifier of C
if is an anti-unifier of C and no ’ satisfies C L’.

Examples
The least common anti-uinifer of abaaab and aaabb is axayb.
The least common anti-uinifer of konnichiwa and konbanwa

are konxwa.
The least common anti-uinifers of konnichiwa and konbannwa

are konxwa and koxnywa.

9

Notes
 The operation of “making one step refinement” can be

regarded as “applying derivative”

10

The learning algorithm learn-patterns

For n = 1 forever
receive en = sn , bn
compute the list l = 1, 2 , …, k of all the
least common anti-unifications of the set of
positives Cn = {sj : sj , and j = 1, 2, …, n}
for each j in the list l

if an ej = sj , s.t. sj L(j) is found
delete j from l

if l is not empty
return one i

11

In Theoretical Form
Lemma 2 Let 1, 2,…,n be patterns. If the language

L(k) is minimal in {L(1), L(2),…, L(n) }, then k is
one of the longest patterns in the list.

Lemma 3 Let 1 and 2 be patterns of same length. Then
L(1) L(2) if and only if 2=1.

Note If we do not assume 1 and 2 be patterns of same
length, then it is not decidable whether or not
L(1) L(2).

12

Which pattern should be chosen?
 Let C be a set of (positive) examples
1. Select all shortest examples.
2. Look for one of the minimal patterns between x

(a singleton variable) and the anti-unifier of the
shortest examples, and return it.

Note: If we only follow the identification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples
but this might not seem “learning”.

13

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axb)
baaabbaaaaabbabaabb L(bxyzb)

L(axyb)
abaaab
aabb abab

baaab

abbb
baaaaab

babaabb ababa

babbaL(bxyzb)
aaabb

L(xyzb)

14

Outputting a Pair of Patterns
C = {babaabbaaabbaaabaabbababbaaaaab

abbb aaabb baaab}

abaaabaabbabababbb aaabb L(axyb)
baaabbaaaaabaaabb babaabb L(xaayb)

L(axyb)

aaabb
abaaab
aabb abab

baaab

abbb

baaaaab
babaabb ababa

babbaL(xaayb)
L(xyzb)

15

Downward Coverset Algorithm
Given a data set C
For each minimally common anti-unifier of C

For each a pair 1, 2 of patterns just beneth in the
Hasse Diagram

if L() C – L(1) then
make minimally common anti-unification 1’
of C L(1)
and

minimally common anti-unification 2’of C – L(1)

16

Correctness of Learning Algorithms

17

Positive and Negative examples

L() : a language represented
with a pattern
 a positive example on L() :

< s, +> for x L()
a negative example on L() :

< s, > for x L()

e1, e2, e3, ...

L()

positive
examples

negative examples

18

Abstract Classification
 A half-plane P which contains C (yes) and excludes D

(no) is to be learned
 The half-plane P is represented as a pair (w, c) which

means the linear inequation (w, x) + c > 0.
 Let C(p)={x Rn | p(x) } for a predicate p.

Then the search space (version space) is
C = {C(x.((w, x) + c > 0)) | w Rn , c Rn }.

The set of parameter s are from
H = { (w, c) | w Rn , c Rn }.

 The training examples are provided as the sets C and D.
 A learning algorithm is provided.

19

Typical evaluation method

 A learning algorithm A is evaluated with test data as
follows.

Step1. Let C* are set of all positive data and D* be are all
negatives.
Step 2. Select subsets Ctraining C* and Dtraining D* for
training.
Step 3. Apply A to the pair Ctraining and Dtraining and obtain a
rule f.
Step 4. Select subsets Ctest and Dtest make a confusion matrix.
Step 5. Calculate some measures from the confusion matrix.

20

Confusion Matrix
 Every data is represented as a pair x = <s, p>

p = + if s C and p = if s D

Ctest Dtest

{s CtestDtest| f(s) = 1 }
positive

true positive false positive

{s CtestDtest| f(s) = 0 }
negative

false negative true negative

21

Measures
 Accuracy | TP | + | TN |

| TP | + | FP | + | TN | + | FN |
 Error rates 1- Accuracy
 Precision (positive predictive rate)

| TP |
| TP | + | FP |

 Recall (coverage, true-positive rate,
sensitivity) | TP |

| TP | + | FN |
22

When learning is correct?
 Every data is represented as a pair x = <s, p>

p = + if s C and p = if s D

Ctest Dtest

{s CtestDtest| f(s) = 1 }
positive

empty

{s CtestDtest| f(s) = 0 }
negative

empty

23

Comparison with an Unknown Function
 Assuming an unknown discriminant function f* such that

C* = { x = <w, 1> | f* (w) = 1 }
D* = { x = <w, 1> | f* (w) = 0 }

we evaluate the learning algorithm A by comparing its
output f with f* .
 If every function f that we treat is represented as a

parameter p, we compare p for f and p* for f* .
 Every linear inequation (w, x) + c > 0 is represented as a

parameter vector (w, c).
 We evaluate A with comparing (w, c) and (w*, c*).

24

Correctness with Unknown Functions (1)
 Assuming an unknown discriminant function f* ,

we could say that the learning algorithm A is correct if
the output f of A becomes nearer f* when more data are
fed to A.

 Mathematically, consider a infinite sequence of training
data sets (C0, D0), (C1, D1), (C2, D2),… such that

C0 C1 C2 C* and
D0 D1 D2 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if || fi – f* || 0 for any of
such sequences. 25

Correctness with Unknown Functions (2)
 A similar definition of correctness could be defined:

If the learning algorithm A is correct if
A outputs f* whenever an enough amount of training data

are fed to A.
 Mathematically, consider a infinite sequence of training

data sets (C1, D1), (C2, D2), (C3, D3), … such that
C1 C2 C3 C* and
D1 D2 D3 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if for each of such
sequences, there exists an N such that || fi – f* || 0 for
all n

26

Estimation and Learning
 Estimation in statistics means to infer the value of

parameters from examples.
 We assume an unknown value of .
 The parameter affects the distribution of D(), and

only finite number of data are coming from the set.
 We expect that, more data from D(), better conjecture
^ could be obtained.

 The conjecture ^ is (statistically) consistent if
lim n E(^) =

27

Correctness of Learning
Patterns

28

Examples on L()
 We assume that, for an unknown pattern *,
C* is a finite set of positive examples on L(*) and
D* is a finite set of negative examples on L(*).

 a positive example on L() :
< x, +> for x L()

 a negative example on L() :
< x, > for x L()

L()

positive
examples

negative examples

29

Question
 If we give more and more (negative and positive)

examples on L(*) to an learning algorithm, does it
eventually conjecture the unknown * ?

 We have to give mathematical definitions of
 giving more and more examples, and

 or giving examples many enough
 conjecturing eventually.

L()

D*

C*

^

30

Assumption
 Without loss of generality, we may assume that learning

algorithm takes examples in C* and D* one by one.
 In the situation that both Ci and Di grow, we assume that

an infinite sequence of strings marked with either or
and some truncation of corresponds to Ci and Di.

Example
 : <ab,+>, <aab,+>, <bbb,>, <aaab,+>, <abba,>,…

Ci = {ab aabaaab
Di = {bbbabba

31

Presentations
Definition A presentation of L() is a infinite sequence
 < s0, p0 >, < s1, p1 >, < s2, p2 >, …
 where si and pi= or

 < s, +> is a positive example
 < s, > is a negative example

 [n] = < s0, p0>, < s1, p1 >, < s2, p2 >, …, < sn1, pn1 >
Definition A presentation is complete if

any x L() appears in as a positive example < x, +>
at least once and
any x L() appears in as a negative example < x, >
at least once.

32

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit
from complete presentations if
for any complete presentation = x1, x2, x3, ... of L()
and the output sequence 1, 2, 3, ... of A, there exists N
such that for all n N n= ’ and L(’) = L()

1, 2, 3, ... x1, x2, x3, ...

33

The learning algorithm learn-patterns

For n = 1 forever
receive en = sn , bn
compute the list l = 1, 2 , …, k of all the
least common anti-unifications of the set of
positives Cn = {sj : sj , and j = 1, 2, …, n}
for each j in the list l

if an ej = sj , s.t. sj L(j) is found
delete j from l

if l is not empty
return one i

34

Theorem The algorithm of Learn-pattern EX-identifies the
class of all pattern languages in the

Identification of patterns

35

Positive presentations

 A presentation is positive if consists only of
positive example < s, +> and any positive example
occurs at least once in .

 A presentation is complete if
any x L() appears in as a positive example
< s, +> at least once.

1, 2, 3, ... e1, e2, e3, ...

L()

36

The learning algorithm learn-patterns

For n = 1 forever
receive en = sn , bn
compute the list l = 1, 2 , …, k of all the
least common anti-unifications of the set of
positives Cn = {sj : sj , and j = 1, 2, …, n}
for each j in the list l

if an ej = sj , s.t. sj L(j) is found
delete j from l

if l is not empty
return one i

37

Theorem The revised algorithm of Learn-pattern EX-
identifies the class of all pattern languages in the limit
from positive presentations.

Identification of patterns

38

