Computational Learning Theory Extending Patterns with the Correctness of Learning Algorithms

Akihiro Yamamoto 山本 章博

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/ akihiro@i.kyoto-u.ac.jp

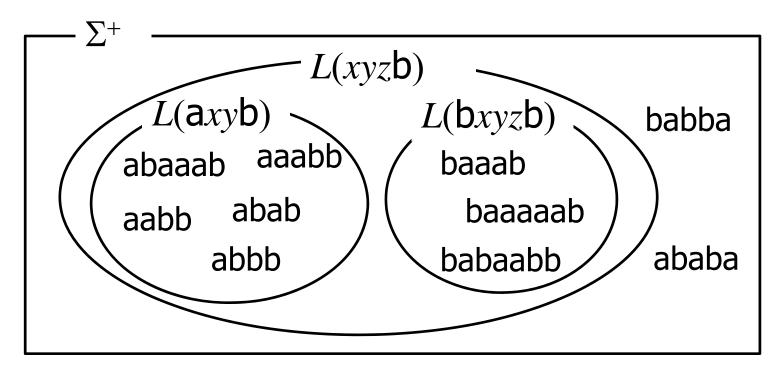
- What about a pair of patterns?
- Correctness of Learning Algorithms

What about a pair of patterns?

Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab, abbb, aaabb, baaab}

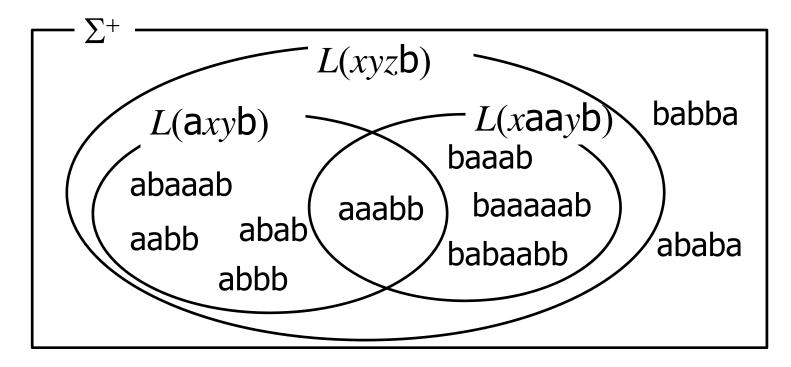
> abaaab, aabb, abab, abbb, aaabb $\in L(axb)$ baaab, baaaaab, babaabb $\in L(bxyzb)$

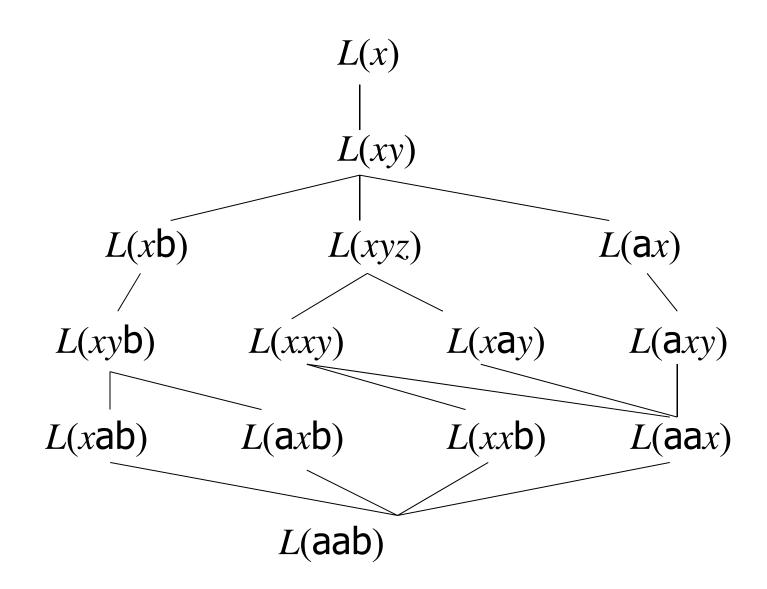


Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab, abbb, aaabb, baaab}

> abaaab, aabb, abab, abbb, aaabb $\in L(axyb)$ baaab, baaaaab, aaabb, babaabb $\in L(xaayb)$





How to Construct H.D.

- A string w is an instance of π if $w = \pi \theta$ for some substitution θ .
- A pattern τ is one step refinement of π if $\tau = \pi \theta$ and θ is one of the three:
 - $\theta = \{(x, c)\}$ Replacing a variable with a symbol (character)
 - $\theta = \{(x, x_1x_2)\}$ Spritting a variable with two new variables
 - $\theta = \{(x, z), (y, z)\}$ Unifying two variables into one

Example

 $x \rightarrow x_1 x_2 \rightarrow x_1 x_2 x_3 \rightarrow x_1 x_1 x_3 \rightarrow x_1 x_1 \mathbf{b}$

Substitution (1)

• A substitution is a set of pairs

 $\theta = \{ (x_1, \tau_1), (x_2, \tau_2), ..., (x_n, \tau_n) \}$ where $x_1, x_2, ..., x_n$ are distinct variables and

 $\pi_1, \pi_2, \ldots, \pi_n$ are patterns.

• Applying a substitution θ to a pattern π is replacing every variable x_i in π with τ_i simultaneously.

The result is denoted by $\pi\theta$.

Example

 $\begin{aligned} \theta_1 &= \{ (x, bba), (y, ba) \} \\ \theta_2 &= \{ (x, bya), (y, ayb) \} \\ bxaxb\theta_1 &= bbbaabbab, bxaxb\theta_2 &= bbyaabyab, \\ axbbya\theta_1 &= abbabbbaa, axbbya\theta_2 &= abyabbayba \end{aligned}$

Anti-Unification

- A pattern π is an anti-unifier of the set *C* of positive examples if $C \subset L(\pi)$, i.e., for each positive example w, $w=\pi\theta$.
- A pattern π is a least common anti-unifier of *C* if π is an anti-unifier of *C* and no $\pi' \leq \pi$ satisfies $C \subset L(\pi')$.

Examples

The least common anti-uinifer of abaaab and aaabb is axayb. The least common anti-uinifer of konnichiwa and konbanwa are konxwa.

The least common anti-uinifers of konnichiwa and konbannwa are konxwa and koxnywa.

 The operation of "making one step refinement" can be regarded as "applying derivative"

The learning algorithm *learn-patterns*

For n = 1 forever

receive $e_n = \langle s_n, b_n \rangle$ compute the list $l = \pi_1, \pi_2, ..., \pi_k$ of all the least common anti-unifications of the set of positives $C_n = \{s_i : \langle s_i, + \rangle \text{ and } j = 1, 2, ..., n\}$ for each π_i in the list lif an $e_i = \langle s_i, - \rangle$ s.t. $s_i \in L(\pi_i)$ is found delete π_i from lif *l* is not empty return one π_i

In Theoretical Form

Lemma 2 Let $\pi_1, \pi_2, ..., \pi_n$ be patterns. If the language $L(\pi_k)$ is minimal in $\{L(\pi_1), L(\pi_2), ..., L(\pi_n)\}$, then π_k is one of the longest patterns in the list.

Lemma 3 Let π_1 and π_2 be patterns of same length. Then $L(\pi_1) \subseteq L(\pi_2)$ if and only if $\pi_2 \theta = \pi_1$.

Note If we do not assume π_1 and π_2 be patterns of same length, then it is not decidable whether or not $L(\pi_1) \subseteq L(\pi_2)$.

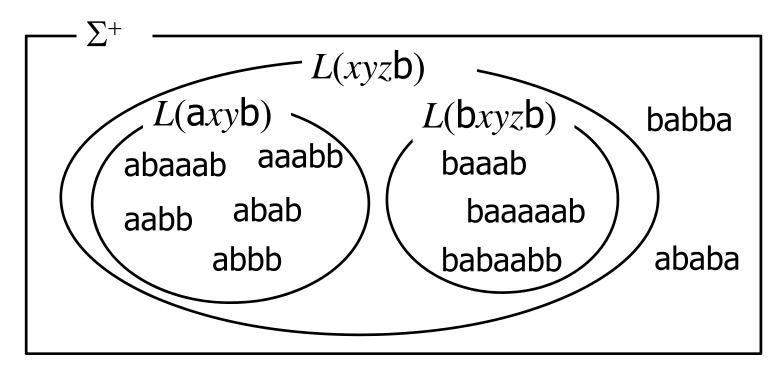
Which pattern should be chosen?

- Let *C* be a set of (positive) examples
- 1. Select all shortest examples.
- 2. Look for one of the minimal patterns between x (a singleton variable) and the anti-unifier of the shortest examples, and return it.
- Note: If we only follow the identification-in-thelimit criterion, the second can be simplified as 2'. Return the anti-unifier of the shortest examples but this might not seem "learning".

Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab, abbb, aaabb, baaab}

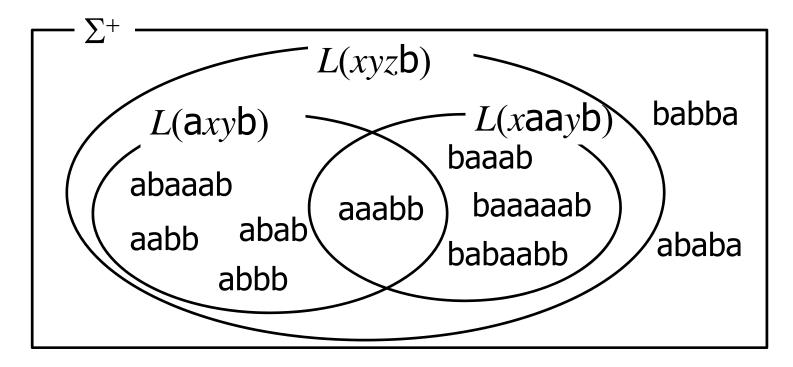
> abaaab, aabb, abab, abbb, aaabb $\in L(axb)$ baaab, baaaaab, babaabb $\in L(bxyzb)$



Outputting a Pair of Patterns

C = {babaabb, aaab, baaab, aabb, abab, baaaaab, abbb, aaabb, baaab}

> abaaab, aabb, abab, abbb, aaabb $\in L(axyb)$ baaab, baaaaab, aaabb, babaabb $\in L(xaayb)$



Downward Coverset Algorithm

Given a data set C

For each minimally common anti-unifier π of *C*

For each a pair π_1 , π_2 of patterns just beneth π in the Hasse Diagram

if $L(\pi_2) \subset C - L(\pi_1)$ then

make minimally common anti-unification π_1 ' of $C \cap L(\pi_1)$

and

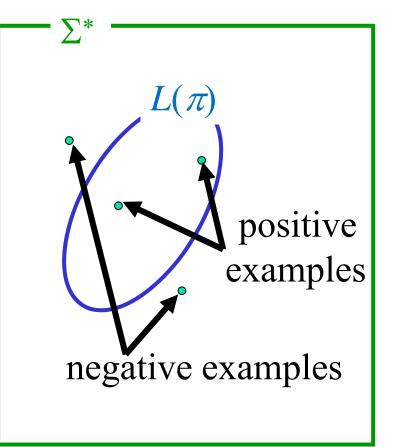
minimally common anti-unification π_2 of $C - L(\pi_1)$

Correctness of Learning Algorithms

Positive and Negative examples

$$e_1, e_2, e_3, \dots$$

- $L(\pi)$: a language represented with a pattern π
- a positive example on $L(\pi)$: < s, +> for $x \in L(\pi)$
 - a negative example on $L(\pi)$: < s, -> for $x \notin L(\pi)$



Abstract Classification

- A half-plane P which contains C (yes) and excludes D (no) is to be learned
- The half-plane P is represented as a pair (w, c) which means the linear inequation (w, x) + c > 0.
 - Let $C(p) = \{x \in \mathbb{R}^n \mid p(x)\}$ for a predicate p. Then the search space (version space) is $C = \{C(\lambda x.((w, x) + c > 0)) \mid w \in \mathbb{R}^n, c \in \mathbb{R}^n\}.$ The set of parameter s are from

 $\mathsf{H} = \{ (w, c) \mid w \in \mathbb{R}^n, c \in \mathbb{R}^n \}.$

- The training examples are provided as the sets *C* and *D*.
- A learning algorithm is provided.

Typical evaluation method

• A learning algorithm *A* is evaluated with test data as follows.

Step1. Let C_* are set of all positive data and D_* be are all negatives.

Step 2. Select subsets $C_{\text{training}} \subset C_*$ and $D_{\text{training}} \subset D_*$ for training.

Step 3. Apply A to the pair C_{training} and D_{training} and obtain a rule f.

Step 4. Select subsets C_{test} and D_{test} make a confusion matrix.

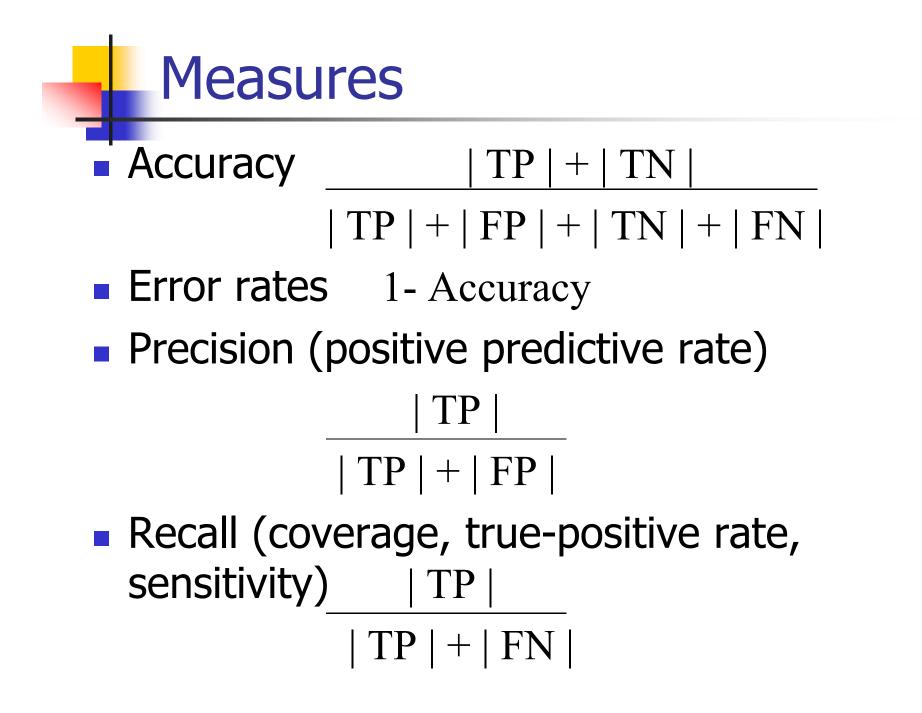
Step 5. Calculate some measures from the confusion matrix.

Confusion Matrix

• Every data is represented as a pair $x = \langle s, p \rangle$

p = + if $s \in C$ and p = - if $s \in D$

	C _{test}	D _{test}
$\{s \in C_{\text{test}} \cup D_{\text{test}} / f(s) = 1\}$	true positive	false positive
positive		
$\{s \in C_{\text{test}} \cup D_{\text{test}} / f(s) = 0\}$	false negative	true negative
negative		



When learning is correct?

• Every data is represented as a pair $x = \langle s, p \rangle$

p = + if $s \in C$ and p = - if $s \in D$

	C_{test}	D _{test}
$\left\{s \in C_{\text{test}} \cup D_{\text{test}} / f(s) = 1\right\}$		empty
positive		
$\{s \in C_{\text{test}} \cup D_{\text{test}} / f(s) = 0\}$	empty	
negative		

Comparison with an Unknown Function

• Assuming an unknown discriminant function f_* such that

$$C_* = \{ \mathbf{x} = \langle w, 1 \rangle \mid f_*(w) = 1 \}$$
$$D_* = \{ \mathbf{x} = \langle w, 1 \rangle \mid f_*(w) = 0 \}$$

we evaluate the learning algorithm A by comparing its output f with f_* .

- If every function f that we treat is represented as a parameter p, we compare p for f and p* for f*.
 - Every linear inequation (w, x) + c > 0 is represented as a parameter vector (w, c).
 - We evaluate A with comparing (w, c) and (w_*, c_*) .

Correctness with Unknown Functions (1)

- Assuming an unknown discriminant function f_{*},
 we could say that the learning algorithm A is correct if
 the output f of A becomes nearer f_{*} when more data are
 fed to A.
- Mathematically, consider a infinite sequence of training data sets (C₀, D₀), (C₁, D₁), (C₂, D₂),... such that C₀ ⊂ C₁ ⊂ C₂ ⊂... ⊂ C_{*} and D₀ ⊂ D₁ ⊂ D₂ ⊂... ⊂ C_{*} and D₀ ⊂ D₁ ⊂ D₂ ⊂... ⊂ D_{*}. Let f_i be the output of A for C_i and D_i. Then the algorithm A is correct if || f_i − f_{*} || → 0 for any of

such sequences.

Correctness with Unknown Functions (2)

- A similar definition of correctness could be defined:
 If the learning algorithm A is correct if
 A outputs f_{*} whenever an enough amount of training data are fed to A.
- Mathematically, consider a infinite sequence of training data sets (C₁, D₁), (C₂, D₂), (C₃, D₃), ... such that C₁ ⊂ C₂ ⊂ C₃ ⊂... ⊂ C_{*} and D₁ ⊂ D₂ ⊂ D₃ ⊂... ⊂ C_{*} and D₁ ⊂ D₂ ⊂ D₃ ⊂... ⊂ D_{*}. Let f_i be the output of A for C_i and D_i. Then the algorithm A is correct if for each of such sequences, there exists an N such that || f_i − f_{*} || = 0 for all n ≥ N.

Estimation and Learning

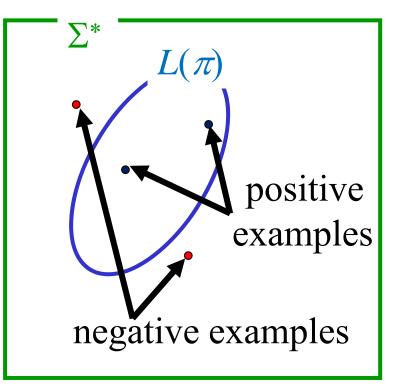
- Estimation in statistics means to infer the value of parameters from examples.
- We assume an unknown value of θ .
- The parameter θ affects the distribution of $D(\theta)$, and only finite number of data are coming from the set.
- We expect that, more data from D(θ), better conjecture
 θ[^] could be obtained.
- The conjecture θ^{\wedge} is (statistically) consistent if $\lim_{n \to \infty} E(\theta^{\wedge}) = \theta$

Correctness of Learning Patterns

Examples on $L(\pi)$

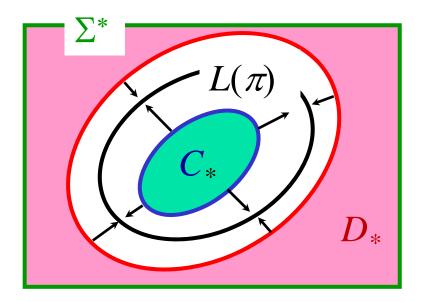
• We assume that, for an unknown pattern π_* , C_* is a finite set of positive examples on $L(\pi_*)$ and D_* is a finite set of negative examples on $L(\pi_*)$.

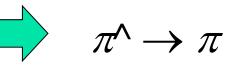
a positive example on L(π):
< x, +> for x ∈ L(π)
a negative example on L(π):
< x, -> for x ∉ L(π)



Question

- If we give more and more (negative and positive) examples on $L(\pi_*)$ to an learning algorithm, does it eventually conjecture the unknown π_* ?
- We have to give mathematical definitions of
 - giving more and more examples, and
 - or giving examples many enough
 - conjecturing π eventually.





Assumption

- Without loss of generality, we may assume that learning algorithm takes examples in C_{*} and D_{*} one by one.
- In the situation that both C_i and D_i grow, we assume that an infinite sequence σ of strings marked with either + or -, and some truncation of σ corresponds to C_i and D_i .

Example $\sigma: \langle ab, +\rangle, \langle aab, +\rangle, \langle bbb, -\rangle, \langle aaab, +\rangle, \langle abba, -\rangle, \dots$ $C_i = \{ab, aab, aaab\},$ $D_i = \{bbb, abba\}.$

Presentations

Definition A presentation of $L(\pi)$ is a infinite sequence

$$\sigma: \langle s_0, p_0 \rangle, \langle s_1, p_1 \rangle, \langle s_2, p_2 \rangle, \dots$$

where $s_i \in \Sigma^*$ and $p_i = +$ or $-$.

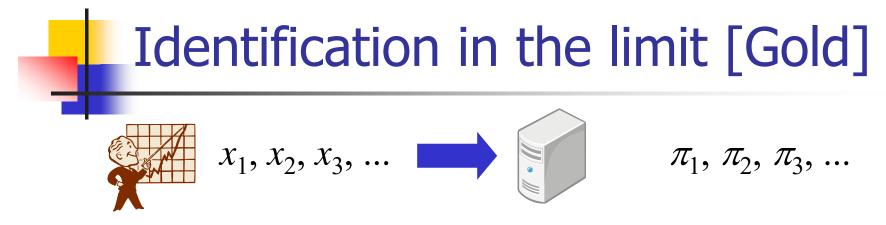
- < s, +> is a positive example
- < s, -> is a negative example

• $\sigma[n] = \langle s_0, p_0 \rangle, \langle s_1, p_1 \rangle, \langle s_2, p_2 \rangle, \dots, \langle s_{n-1}, p_{n-1} \rangle$

Definition A presentation σ is complete if

any $x \in L(\pi)$ appears in σ as a positive example $\langle x, + \rangle$ at least once and

any $x \notin L(\pi)$ appears in σ as a negative example $\langle x, - \rangle$ at least once.



• A learning algorithm *A* EX-identifies $L(\pi)$ in the limit from complete presentations if for any complete presentation $\sigma = x_1, x_2, x_3, \dots$ of $L(\pi)$ and the output sequence $\pi_1, \pi_2, \pi_3, \dots$ of *A*, there exists *N* such that for all $n \ge N$ $\pi_n = \pi'$ and $L(\pi') = L(\pi)$

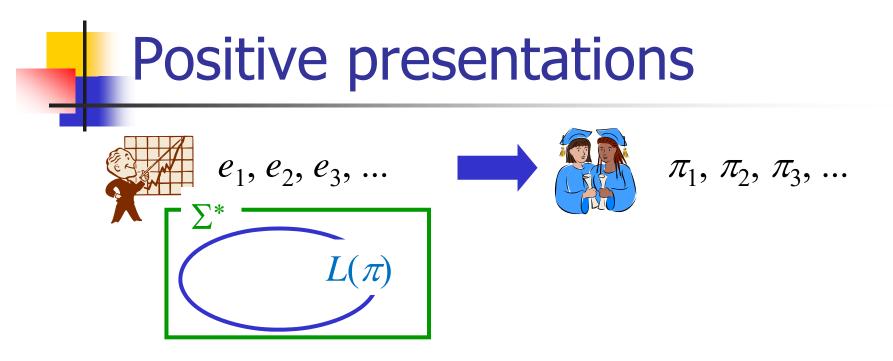
The learning algorithm *learn-patterns*

For n = 1 forever

receive $e_n = \langle s_n, b_n \rangle$ compute the list $l = \pi_1, \pi_2, ..., \pi_k$ of all the least common anti-unifications of the set of positives $C_n = \{s_i : \langle s_i, + \rangle \text{ and } j = 1, 2, ..., n\}$ for each π_i in the list lif an $e_i = \langle s_i, - \rangle$ s.t. $s_i \in L(\pi_i)$ is found delete π_i from lif *l* is not empty return one π_i

Identification of patterns

Theorem The algorithm of *Learn-pattern* EX-identifies the class of all pattern languages in the



- A presentation σ is positive if σ consists only of positive example $\langle s, + \rangle$ and any positive example occurs at least once in σ .
- A presentation σ is complete if
 any x ∈ L(π) appears in σ as a positive example
 < s, +> at least once.

The learning algorithm *learn-patterns*

For n = 1 forever receive $e_n = \langle s_n, b_n \rangle$ compute the list $l = \pi_1, \pi_2, ..., \pi_k$ of all the least common anti-unifications of the set of positives $C_n = \{s_i : \langle s_i, + \rangle \text{ and } j = 1, 2, ..., n\}$ for each π_i in the list *l* $-if an e_i = \langle s_i, - \rangle \text{ s.t. } s_i \in L(\pi_i) \text{ is found}$ delete π_i from lif *l* is not empty return one π_i

Identification of patterns

Theorem The revised algorithm of *Learn-pattern* EXidentifies the class of all pattern languages in the limit from positive presentations.