

Akihiro Yamamoto 山本 章博

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/akihiro@i.kyoto-u.ac.jp

- Item Set Mining and the A Priori Algorithm
- Formal Concept Analysis
- Closed Patterns

ITEM SET MINING

4

A Simple Example

• Set of all items: $X = \{A, B, C, D, E, F\}$

Transaction ID	Item Sets
• • •	
3256	$\{A, C, D\}$
3257	{B, C, E}
3258	$\{A, B, C, E\}$
3259	$\{A, B, E, F\}$
•••	• • • •

• "Items A and C might be bought together."

Bit-vector Representation

Every transaction can be represented as a bitvector of n dimension, where n = |X|.

ID	A	В	С	D	Е	F
• • •						
3256	1	0	1	1	0	0
3257	0	1	1	0	1	0
3258	1	1	1	0	1	0
3259	1	1	0	0	1	1
• • •						

Bag of Words

- Let $X = \{A_1, A_2, ..., A_k\}$ be a finite set of words.
- For a sentence s, we define $T(s) = (x_1, x_2, ..., x_k)$ where $x_i = 1$ if word A_i appears in s = 0 o.w.

for
$$i = 1, 2, ..., n$$

Example

W = (arithmetic, book, compute, paper, suppose, square, symbol, write)

- s₁: Computing is normally done by writing certain symbols on paper.
- s₂: We may suppose this paper is divided into squares like a child's arithmetic book.

$$T(s_1) = (0, 0, 1, 1, 0, 0, 1, 1)$$

$$T(s_2) = (1, 1, 0, 1, 1, 1, 0, 0)$$

4

Mathematical Definitions

Assuming a finite set of all items

$$X = \{A_1, A_2, ..., A_n\}$$

- A transaction is a pair t = (i, T) of an identifier $i \in \mathbb{N}$ and a finite set of items $T \in X$
- A transaction database D is a finite set of transactions in which no pair of transactions have a same identifier, that is,

$$t = (i, T) \in D$$
 and $s = (j, S) \in D$ imply $i \neq j$.

- A pattern is a finite set of items.
 - Transactions are for training data patterns are rules.

Mathematical Definitions (2)

- For a pattern P and a transaction t = (i, T), we say t satisfies P (or P matches t) iff $P \subset T$.
- Let $D(P) = \{ t \mid P \text{ matches } t \}.$
- The support of P in a transaction database D is defined as supp(P) = |D(P)| / |D|.
 - The support is also called the relative frequency.

Definition of Learning Task

- Assuming a set of items X
- For a given transaction database D and a minimal support (threshold) σ s.t. $0 \le \sigma \le 1$, enumerate all patterns P s.t. supp $(P) \ge \sigma$.

A Very Simple Example

ID	A	В	С	D	Е	F
1	1	0	1	1	0	0
2	0	1	1	0	1	0
3	1	1	1	0	1	0
4	1	1	0	0	1	1

$$supp({A}) = supp({B}) = supp({C}) = supp({E}) = 0.75,$$

 $supp({D}) = supp({F}) = 0.25$
 $supp({A, B}) = supp({A, C}) = 0.5, supp({A, D}) = 0.25,...$

Monotonicity of the Support

Lemma For two patterns P and Q,

$$P \subseteq Q \implies \operatorname{supp}(P) \ge \operatorname{supp}(Q)$$

ID	A	В	С	D	E	F
1	1	0	1	1	0	0
2	0	1	1	0	1	0
3	1	1	1	0	1	0
4	1	1	0	0	1	1

$$supp({A})=0.75 \ge supp({A, B})=0.25$$

 $supp({B})=0.5 \ge supp({A, B})=0.25$
 $supp({A})=0.75 \ge supp({A, C})=0.5$

Example Run of Apri-Ori Alg.

ID	A	В	С	D	Е	F
1	1	0	1	1	0	0
2	0	1	1	0	1	0
3	1	1	1	0	1	0
4	1	1	0	0	1	1

$$\sigma = 0.5$$

$$C_{1} = \{\{A\}, \{B\}, ..., \{F\}\}\}$$

$$L_{1} = \{\{A\}, \{B\}, \{C\}, \{E\}\}\}$$

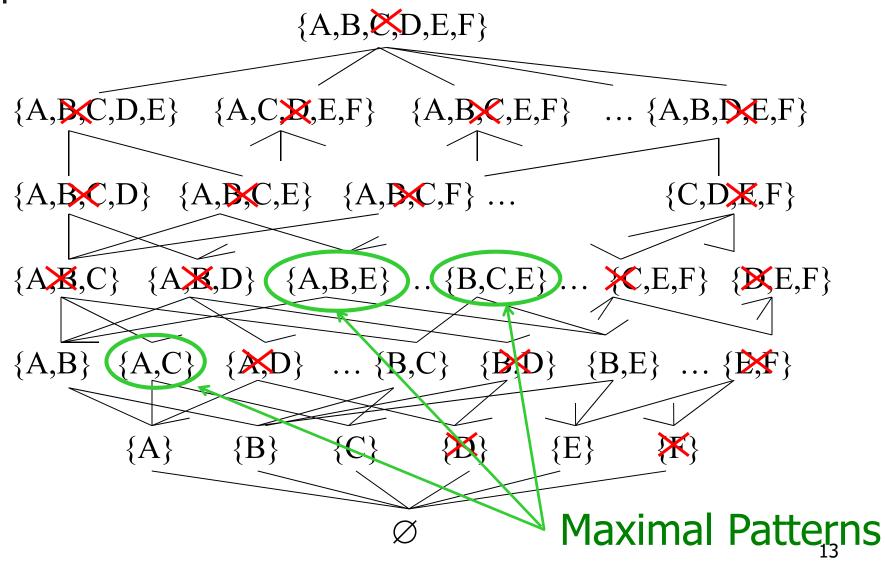
$$C_{2} = \{\{A, B\}, \{A, C\}, \{B, E\}, \{C, E\}\}\}$$

$$L_{2} = \{\{A, B\}, \{A, C\}, \{A, E\}, \{B, C\}, \{B, E\}, \{C, E\}\}\}$$

$$C_{3} = \{\{A, B, C\}, \{A, B, E\}, \{B, C, E\}\}\}$$

$$L_{3} = \{\{A, B, E\}, \{B, C, E\}\}$$

Maximal Patterns in the Hasse Diagram



FORMAL CONCEPT ANALYSIS

Bit-vector Representation

Every transaction can be represented as a bitvector of n dimension, where n = |X|.

ID	A	В	С	D	Е	F
• • •						
3256	1	0	1	1	0	0
3257	0	1	1	0	1	0
3258	1	1	1	0	1	0
3259	1	1	0	0	1	1

4

Context Table Representation

■ Instead of "1", we use ■.

ID	A	В	С	D	Е	F
•••						
3256						
3257						
3258						
3259						
• • •						

Formal Concepts

■ A formal concept is a maximal rectangular filled with ●, without considering the ordering of law and column.

	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}	m ₁₁	m ₁₂
g_1												
g_2												
g_3												
g_4						•						

	m_1	m_2	m_3	m_4	m_7	m_8	m_5	m_6	m_9	m_{10}	m ₁₁	m ₁₂
g_1												
g_2												
g_3												
g_4												

Intuitive Explanation

In the context of item set mining, a formal concept is a pair of a set *A* of transaction and a set *B* of items such that

- every transaction in A contains all items in B,
- every items in B is contained by all transactions in A,
- for every item *i* which is not in *B*, at least one transaction in *A* does not contain *i*, and
- for every transaction t which is not in A, at least one item is not contained by t.

4

Mathematical Definition

- A formal context K=(G, M, I) consists of two sets G (objects, Gegenstand) and M (attributes, Merkmal) and a binary relation $I \subseteq G \times M$.
- We define two functions $f: 2^G \to 2^M$ and $h: 2^M \to 2^G$ $f(A) = \{ m \in M \mid (g, m) \in I \text{ for all } g \in A \}$ $h(B) = \{ g \in G \mid (g, m) \in I \text{ for all } m \in B \}$
 - The pair (f, h) is called a Glois connection between 2^G and 2^M .
- A formal concept of K is a pair C=(A, B) with $A \subseteq G$ and $B \subseteq M$ such that f(A)=B and h(B)=A, i.e.

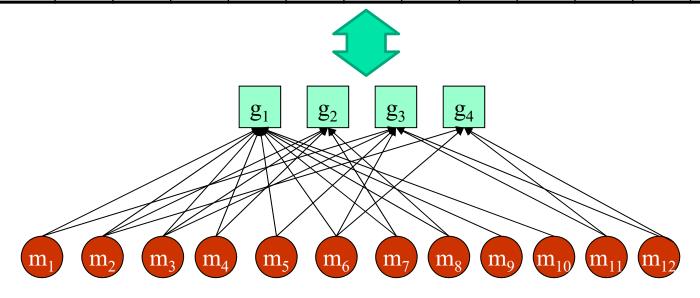
$$h(f(A))=A$$
 and $f(h(B))=B$.

• A is called the extent of C and B is called the intent of C.

Bipartite Graph Representation

- Every context table can be represented as a bipartite graph.
- Every formal concept is a represented as a bipartite clique.

	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}	m ₁₁	m_{12}
g_1												
g_2												
g_3												
g_4	•	•			•						•	



Some Propositions

For a context $K=(G, M, I), A, A_1, A_2 \subseteq G$ and $B, B_1, B_2 \subseteq M$,

$$\bullet A_1 \subseteq A_2 \Rightarrow f(A_2) \subseteq f(A_1) \quad \bullet \quad B_1 \subseteq B_2 \Rightarrow h(B_2) \subseteq h(B_1)$$

$$\bullet \ A \subseteq h(f(A))$$

$$\bullet \ B \subseteq f(h(B))$$

$$\blacksquare A \subseteq h(B) \Leftrightarrow B \subseteq f(A) \Leftrightarrow A \times B \subseteq I$$

•
$$h(f(A_1 \cup A_2)) = h(f((h(f(A_1)) \cup h(f(A_2))))$$

•
$$f(h(B_1 \cup B_2)) = f(h((f(h(B_1)) \cup f(h(B_2))))$$

$$A_1 \subseteq h(f(A_2) \Rightarrow h(f(A_1) = h(f(A_2))$$
 and
$$h(f(A_1 \cup A) = h(f(A_2 \cup A))$$

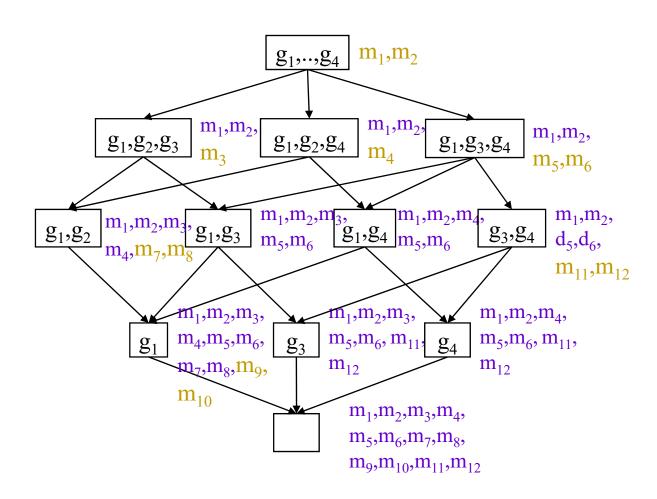
$$B_1 \subseteq f(h(B_2) \Rightarrow f(h(B_1) = f(h(B_2))$$
and
$$f(h(B_1 \cup B) = f(h(B_2 \cup B))$$

Some Propositions

For formal concepts
$$C_1=(A_1,B_1)$$
 and $C_2=(A_2,B_2)$,
$$A_1\subseteq A_2 \Leftrightarrow B_2\subseteq B_1$$

Hasse Diagram of FCs

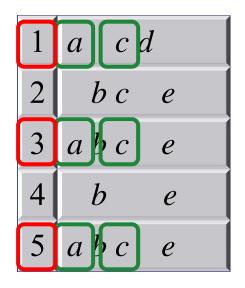
 We can draw another Hasse diagram with all of the formal concepts.



CLOSED PATTERNS

Closed Item Sets [Pasquier et al.]

- For a transaction data, we let *G* is the set of all transaction id and *M* is the set of all items.
- An pattern B is closed iff B = f(h(B)), i.e, (h(B), B) is a formal concept.



 $\sigma = 0.5$

Frequent closed pattern: c, ac, be, bce

Frequent but not closed pattern: a, bc, \dots

■ For a transaction data, we let *G* is the set of all transaction ids and *M* is the set of all items.

Lemmas

Lemma For a context K=(G, M, I), $A \subseteq G$ and $B \subseteq M$

- $h(f(A)) = \bigcap_{g \in G} \{ f(\{g\}) \mid A \subseteq f(\{g\}) \}$
- $f(h(B)) = \bigcap_{m \in M} \{h(\{m\}) \mid B \subseteq f(\{m\})\}$

Corollary For closed patterns B_2 , if $B_2 \subseteq B_1$ and $B_2 \neq B_1$, then supp $(B_2) > \text{supp}(B_1)$.

Corollary For two closed patterns B_1 and B_2 , if $B_2 \subseteq B_1$ and $B_2 \neq B_1$, then supp $(B_2) > \text{supp}(B_1)$.

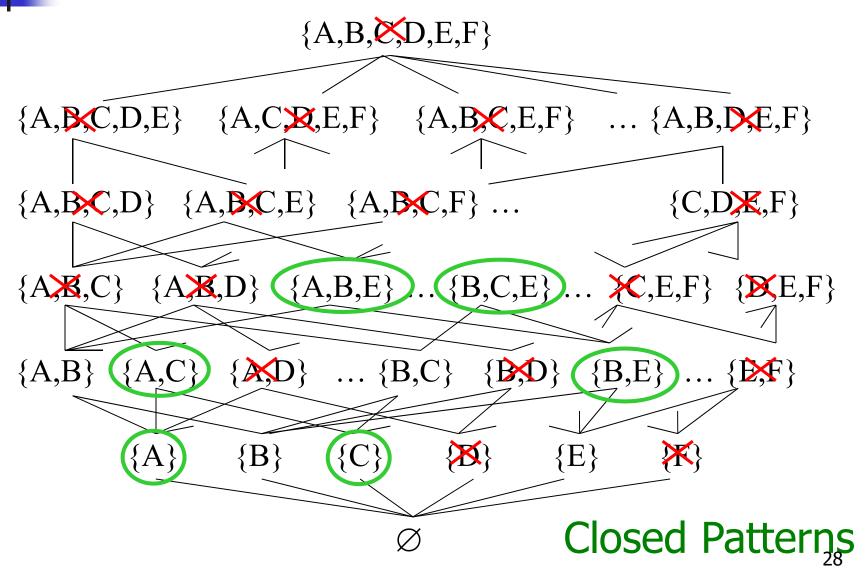
Lemma [Pasquier et al.] Every pattern B_1 of supp $(B_1) = \sigma$ can be derived from some closed pattern B_2 of supp $(B_2) = \sigma$.

Proposition

Proposition Every maximally frequent closed pattern is a frequent closed pattern.

4

Closed Patterns in the Hasse Diagram



Frequent Closed ItemSets

$$\sigma = 0.5$$

ID	A	В	С	D	Е	F
1						
2						
3						
4						

ID	A	В	C	D	Е	F
1						
2						
3						
4						

ID	A	В	С	D	Е	F
1						
2						
3						
4						

Frequent Closed ItemSets

$$\sigma$$
 = 0.25

ID	A	В	С	D	Е	F
1						
2						
3						
4						

ID	A	В	C	D	Е	F
1						
2						
3						
4						

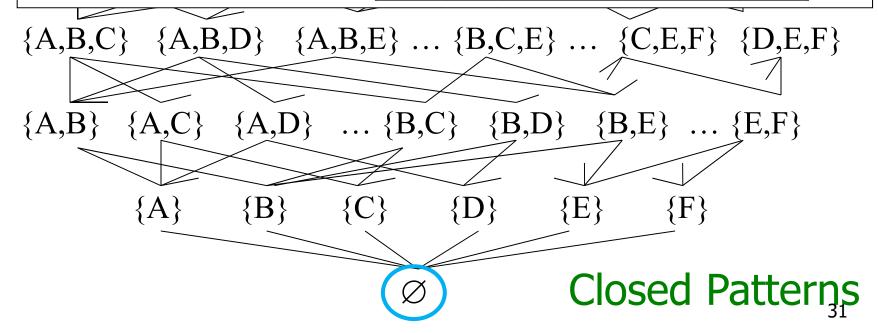
ID	A	В	C	D	Е	F
1						
2						
3						
4						

ID	A	В	C	D	Е	F
1						
2						
3						
4						

How to Find Closed Patterns(1)

Start at Ø

ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(2)

Add A to \varnothing

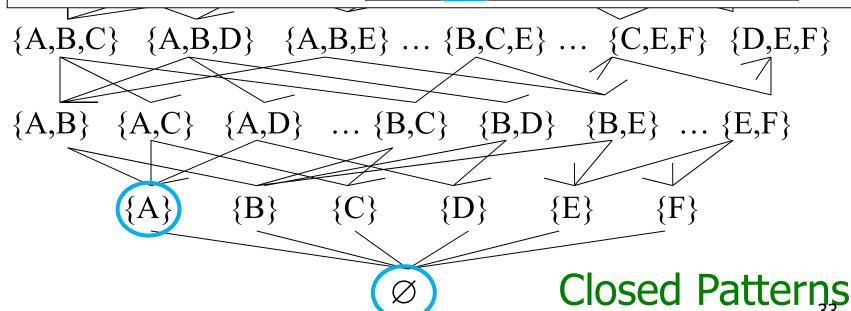
ID	A	В	С	D	Е	F
1						
2						
3						
4						

 $\{A,B,C\} \ \{A,B,D\} \ \{A,B,E\} \dots \{B,C,E\} \dots \{C,E,F\} \ \{D,E,F\} \}$ $\{A,B\} \ \{A,C\} \ \{A,D\} \ \dots \{B,C\} \ \{B,D\} \ \{B,E\} \ \dots \{E,F\} \}$ $(A) \ \{B\} \ \{C\} \ \{D\} \ \{E\} \ \{F\} \}$

How to Find Closed Patterns(3)

Choose transactions containing {A}

ID	A	В	С	D	Е	F
1						
2						
3						
4						

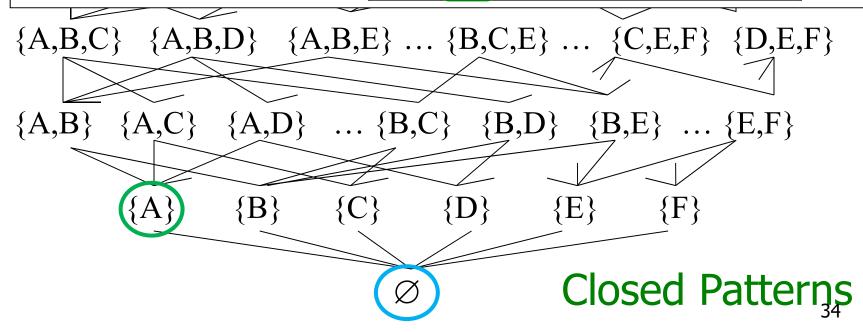


How to Find Closed Patterns(4)

Find the pattern common to $\{1, 3, 4\}$.

If the pattern {A} is closed, output it.

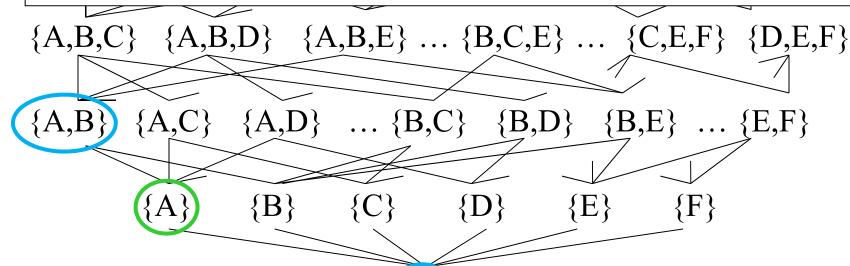
ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(5)

Add B to {A}
: B is chosen from the items X > A

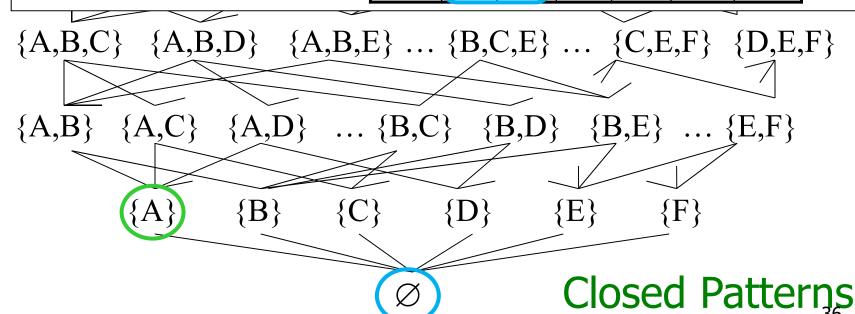
ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(6)

Choose transactions containing {B, A}

ID	A	В	С	D	Е	F
1						
2						
3						
4						

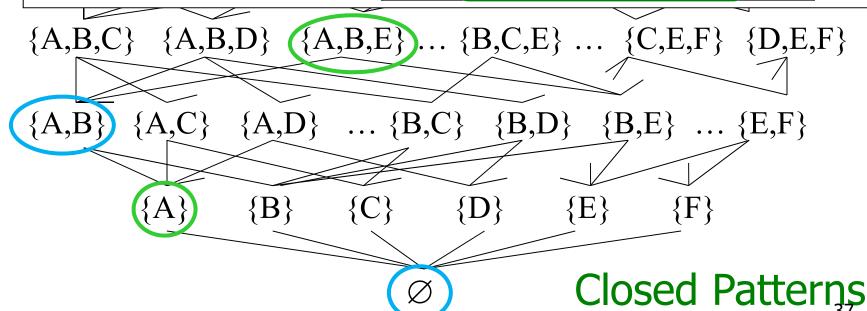


How to Find Closed Patterns(7)

Find the pattern common to $\{3, 4\}$.

If the pattern {A, B, E} is closed, output it.

ID	A	В	С	D	Е	F
1						
2						
3						
4						

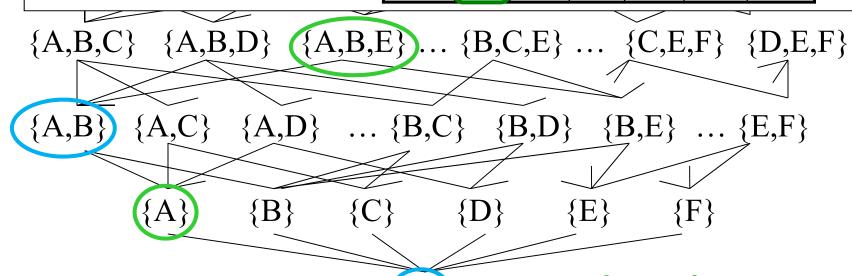


How to Find Closed Patterns(8)

Back track to {A}

ID	A	В	С	D	Е	F
1						
2						
3						
4						

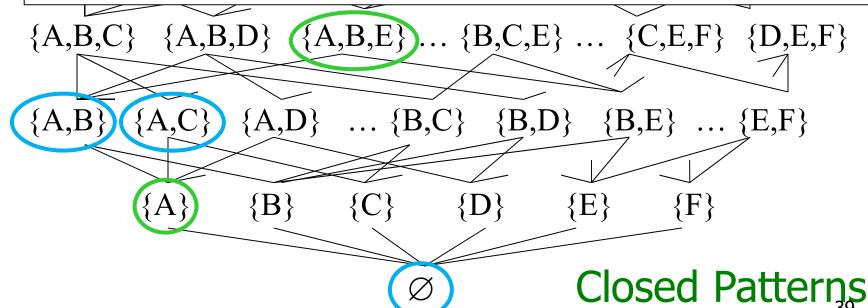
Closed Patterns



How to Find Closed Patterns(9)

Add C to {A}: C is chosen from the items X > AChoose transactions containing {C, A}

ID	A	В	С	D	Е	F
1						
2						
3						
4						

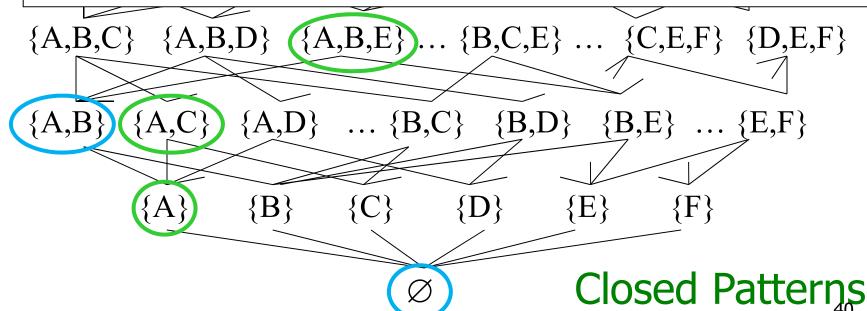


How to Find Closed Patterns(10)

Find the pattern common to $\{1, 3\}$.

If the pattern {A, C} is closed, output it.

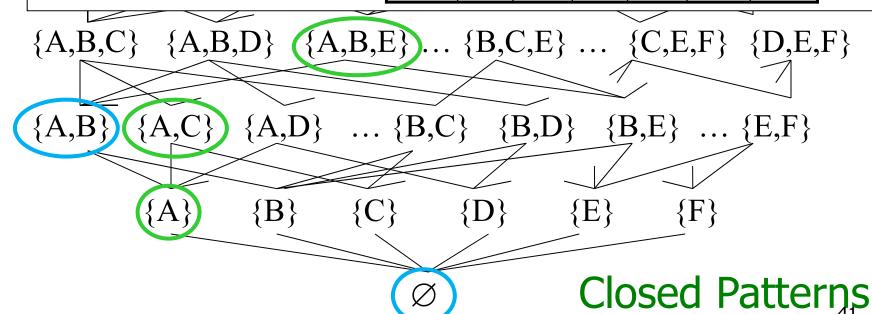
ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(11)

Back track to {A}

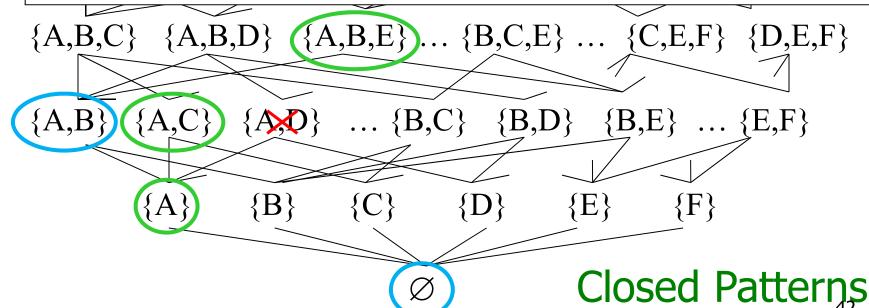
ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(12)

Add D to {A}
: D is chosen from the items X > A
But {A, D} is not frequent,
Again back track to {A}

ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(13)

Add E to {A}
: E is chosen from the items X > A
Choose transactions
containing {E, A}

Note: We have to check if {A, E}

or {A, E, F} is a closed itemset or no

ID	A	В	C	D	Е	F
1						
2						
3						
4						

 $\{A,B,C\}$ $\{A,B,D\}$ $\{A,B,E\}$... $\{B,C,E\}$... $\{C,E,F\}$ $\{D,E,F\}$ $\{A,B\}$ $\{A,C\}$ $\{A,D\}$... $\{B,C\}$ $\{B,D\}$ $\{B,E\}$... $\{E,F\}$ $\{A,B\}$ $\{B\}$ $\{C\}$ $\{D\}$ $\{E\}$ $\{F\}$

Ø

Closed Patterns

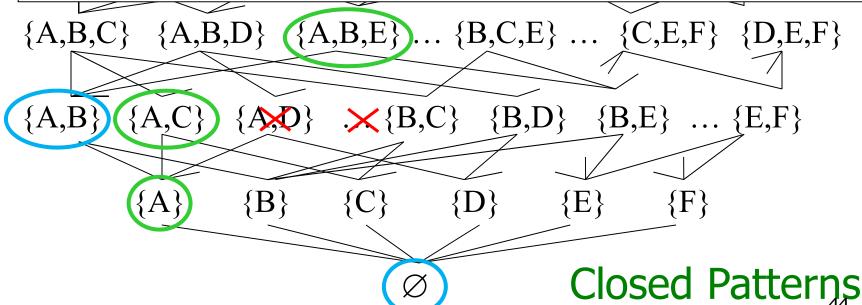
How to Find Closed Patterns(14)

Add F to {A}
: F is chosen from the items X > A

Choose transactions containing {F, A}

Note: We have to check if {A, F} is a closed itemset or not.

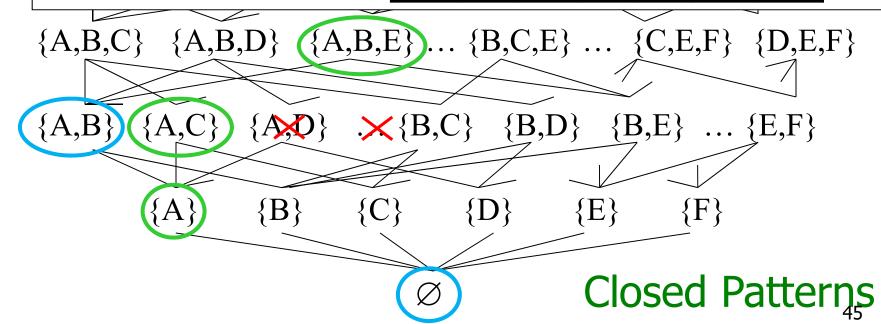
ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(15)

Back track to Ø

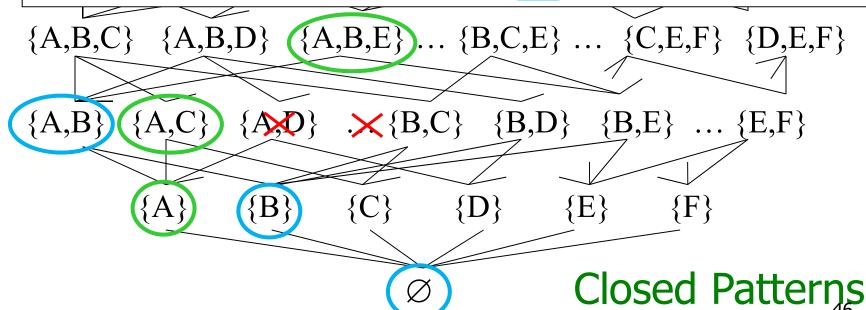
ID	A	В	С	D	Е	F
1						
2						
3						
4						



How to Find Closed Patterns(16)

Add B to Ø and Choose transactions containing {B}

ID	A	В	С	D	Е	F
1						
2						
3						
4						

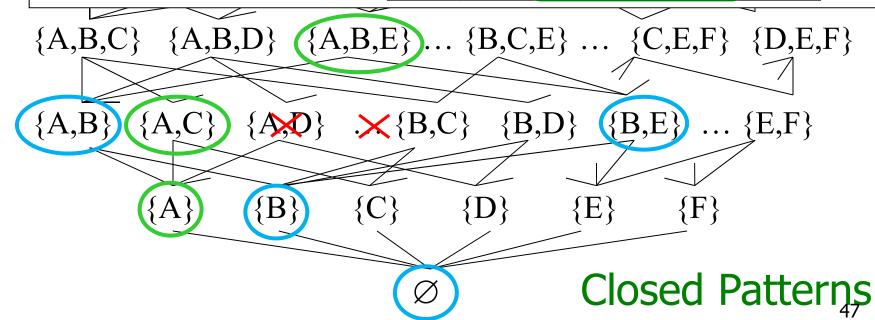


How to Find Closed Patterns(17)

Find the pattern common to $\{2, 3, 4\}$.

If the pattern {B, E} is closed, output it.

ID	A	В	С	D	Е	F
1						
2						
3						
4						



4

The LCM Algorithm [Uno et al. 03]

```
Procedure LCM(P)

output P /* P is a frequent closed itemset */

for each item X > \text{gap}(P) do

if P is frequent and (\overline{P} \cup \{X\}) is closed then

call LCM(P)

end for
```

where $gap(P) = argmin \ h(P) = h(P /_{\leq X}) \ and \ h(P) \neq h(P /_{< X})$ $\overline{(P \cup \{X\})} = \{ Y \mid Y \in f(h(P \cup \{X\})) \ and \ Y > X \}$