
Computational Learning Theory
Learning with EFSs

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Examples
Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D3 ={a bbbbbabbbaaaaba babbb

 Every string in C3 consists of two strings: The first half
consists only of a’s, and the second consists of the
same number of b’s.

2

No pattern represents the rule.

3

Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb

 Every string in C3 consists of two strings: The first half
consists only of a’s, and the second consists of the
same number of b’s.

 Assume a pattern  represents the rule.
If has variables x1,…, xn , a contradiction is derived by

substituting an a to each of xi, that is, applying  = {(x1, a),
…, (xn, a) }to .

An EFS represents the rule.

4

Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb

 Every string in C3 consists of two strings: The first half
consists only of a’s, and the second consists of the
same number of b’s.

 Assume a pattern  represents the rule.
If has variables x1,…, xn , a contradiction is derived by

substituting an a to each of xi, that is, applying  = {(x1, a),
…, (xn, a) }to .

Elementary Formal Systems

5

Mathematical Logic
 Mathematical logic is a subfield of mathematics

exploring the applications of formal logic to
mathematics.[Wikipedia]

All humans are mortal. mortal(x)  human(x)
Socrates is human. human(Socrates)

Socrates is mortal. mortal(Socrates)

6

Inference Operation
Algorithm

AB=AC AB=AC  AC=AB

BAC = CAB AC=AB AB=AC

BAC = CAB AC=AB  AB=AC
(BAC  CAB AC=AB  AB=AC) BAC  CAB

BAC  CAB  ABC=ACB BAC  CAB

ABC = ACB

Relationship among Propositions

AB=AC AB=AC  AC=AB

BAC = CAB AC=AB AB=AC

BAC = CAB AC=AB  AB=AC
(BAC  CAB AC=AB  AB=AC) BAC  CAB

BAC  CAB  ABC= ACB BAC  CAB

ABC = ACB

Relationship among Propositions

Relationship among Propositions






 

Predicate Symbols
 Introducing symbols of a new type.

 Every predicate symbol is interpreted as a language (a set
of strings) or a set of tuples (s1, s2,…,sn) of strings.

 In this course we use symbols p, q, r,… which are
respectively interpreted as sets P, Q, R,….

 An atomic formula is a formula of the form
p(1, 2,…, n)

where 1, 2,…, n are patterns. If n=1 and 1 = s is ground,
p(s) is interpreted as s P.
Example
Some examples of atomic formulae are p(axb), q(ax, by),
q(x, bxb), p(aabb), q(aa, bb). The last two formulae are
ground.

Definite Clause (Rules) and EFS

 A definite clause is a formula of the form
p(1,…, n)  q1 (11,…),q2 (21,…),…, qk (k1,…)

where 1, 2,…, 11,…, k1,… are patterns. The definite
clause is interpreted as
“for any substitution , if (11,…)Q1, (21,…)Q2,…,
qk (k1,…)Qk then (1, 2,…, n) P”
 A clause p(1,…, n)  which has no conditions is

sometimes called a unit clause.
 A finite set of definite clause is called an elementary

formal system (EFS). [Smullyan 61]

11

Examples
Some examples of definite clauses are

p(ax)  r(x)
r(b) 
p(axby)  r(x), r(y)
q(ax, by)  q(x, y)
…
animal(x)  human(x)
objects(x)  animal(x)
human(xy)  human(x), human(y)
human(K) 
human(N)  12

Inference Rules for Definite Clauses

 We use the following two rules
Instantiation
p(1,…)  q1(11,…),q2(21,…),…, qk(k1,…)
(p(1,…)  q1(11,…),q2(21,…),…, qk(k1,…))

Modus Pones
p(1,…) p1(11,…),…, pk(k1,…) p1(1,…) q1(11,…),…

p(1,…) q1(11,…),…, p2(21,…),…, pk(k1,…)
 A proof is a continuous application of the inference

rules.

13

Example of Proof (1)

14

a(x)  h(x)
o(x)  a(x)
h(xy)  h(x), h(y)
h(K) 
h(N) 
h(O) 

h(xy)  h(x), h(y)
h(NO)h(N), h(O) h(N) 

h(NO)h(N) h(O) 
h(NO)

S:

Example of Proof (2)

15

a(x)  h(x)
o(x)  a(x)
h(xy)  h(x), h(y)
h(K) 
h(N) 
h(O) 

a(x)  h(x)
o(x)  a(x) a(K) h(K) h(K) 
o(K) a(K) a(K) 

o(K)

S:

Example of Proof (3)

16

S: p(ax)q(x) q(bx)p(x)
p(a) q(b)

p(ax)q(x)
q(bx)p(x) p(ab)q(b) q(b)

p(ax)q(x) q(bab)p(ab) p(ab)
p(abab)q(bab) q(bab)

p(abab)

Example of Proof (4)

17

S: p(axb)p(x)
p(ab)

p(axb)p(x)
p(axb)p(x) p(aabb)p(ab) p(ab)

p(aaabbb)p(aabb) p(aabb)
p(aaabbb)

Example of Proof (5)

18

S: p(axb)p(x)
p(xy)  p(x), p(y)
p(ab)

p(axb)p(x)
p(xy) p(x), p(y) p(aabb)p(ab) p(ab)

p(aabby)p(aabb),p(y) p(aabb)
p(aabby)p(y)
p(aabbab)p(ab) p(ab)

p(aabbab)

Defining a language by proofs
 A ground atomic formula p(s1,…,sn) is provable from an

EFS S if
there is a proof which derives p(s1,…,sn) and S.

 We define a language with a proof from an EFS.
L(p, S) ={ s | p(s) is provable from S}

Example
S : p(axb)p(x)

p(ab)
L(p, S) ={ab, aabb, aaabbb, aaabbb,…}

19

Refinement Operator for EFS’s

20

Learning EFS
 Fix an effective enumeration of EFS on  X 

S1, S2,…,

k = 1, S = S1
for n = 1 forever

receive en = sn , bn 
while (0  j  n

(ej = sj ,   and sj L(S)) and
(ej = sj ,   and sj L(S))

S= S’ for an appropriate S’; k ++
output S

21

Enumerating EFS

 A simple method to enumerate EFS.
 We define the size of an EFS S as the total

number of symbols in S but except “”, “ ”, “
”and “ ”.

Example size({p(axb)p(x), p(ab)})= 9

22

Enumeration of EFS
ab
size(S)

2 { p(a)  }, { p(b)  }, { p(x)  }
3 { p(aa)  }, { p(ab)  }, { p(ba)  }, { p(bb)  },

{ p(xy)  }, { p(xx)  }, { p(ax)  }, { p(bx)  },
{ p(xa)  }, { p(xb)  },

4 {p(a)  p(a) }, …, {p(x)  p(x)},
{p(aaa)  },…,
{p(a)  , p(b) {p(b)  , p(x) 



23

Hasse Diagram (General Version)

24

L(x)

L(a) L(xy) L(b)

L(xa) L(xb) L(xyz) L(xx) L(ax)
L(bx)

L(aa) L(ba) L(ab) L(bb)
L(xyzw) L(xya) L(xyb) L(xay) L(xby) L(axy) L(bxy) L(xxy) L(xyx) L(xyy)

L(xyxy)

Refinement Operator
 A refinement operator  defines, from a given

rule set g, set of grammar satisfying:
1. (g) is recursively enumerable,
2. for all h (g) L(h)  L(g), and
3. ere is no sequence g1, g2, …, gn of grammars
such that gi+1=(gi) and g1= gn.

 The refinement operator works as the operator
 f (x)  f (x + x) (= f’(x) x  f (x))
for a usual mathematical function f .

25

Refinement of Patterns

 For patterns on 
x ={ x := x y} where y is a fresh variable
xc ={ x := c } where c is in 
xy ={ x := z, y:= x} where z is a fresh variable

() = {x  x is a variable occurring in  }
 {xc  x is a variable occurring in  and c

is in 
 {xy  x and y are variables occurring in  

26

Generating Patterns with Refinement
 Let C be a set of positive examples and D be a set of

negative examples.
 Assume the set of variables X = {x1, x2,…, xn,…}

Let P := { x1 }, Q := 
/* P is for keeping candidates, and Q is for minimal candidates.*/

while P do
choose from P
P’ := 

for each ’  ()
if C  L(’) and L(’) D 

P’ := P’ ’
if P’ = 

Q := Q 
else

P = P  P’ 27

Refinement for EFS’s
 Because an EFS is a set of definite clauses, we

define the refinement operator for EFSs by
 defining the refinement of operator of definite clause
 and then defining the refinement operator of the set

of definite clauses.

28

Refinement for Definite Clauses
 For a definite clause C = A  B1,…,, Bn

x ={ x := x y} where y is a fresh variable
xc ={ x := c } where c is in 
xy ={ x := z, y:= x} where z is a fresh variable

(C) = {C x  x is a variable occurring in C }
 {C xc  x is a variable occurring in C and

c is in 
 {C xy  x and y are variables occurring in C


 { A  B1,…,, Bn, p(x1,…,xk) 

where x1,…,xk are mutually distinct
variables occuring in A}

29

Refinement for Definite Clauses
 For a set S of definite clauses

(S) = {S {D}| D(C) for some C S}
 {S {C}| C S}

 The top element is a set of clauses of the form
p1(x1,…,xn1) 

T : p2(x1,…,xn2) 
p3(x1,…,xn3) 
...

 n(P) : The set of EFS which can be obtained by
applying  repeatedly at most n times.

30

A Successful Case
 If we give some restrictions to EFS S, we can simply

extend the learning algorithm for patterns.
 An example of such a restriction is:

The number of definite clauses in S is bounded up
to a given N and every clause is of the form

p(1,…, n)  q1 (x1),q2 (x2),…, qk (xk)
where x1, x2,…, xk appears in 1,…, n.

 The latter condition is just saying that S corresponds to
a CFG.

31

A Key Property of Refinement
 For EFS S and T,

T (S) ⇒ L(S) L(T)

 The definition of (S) is rather mathematical,
and a more practical method for finding
hypotheses can be formalized with not using
(S) but (C).
 Starting with T, if a definite clause C generates any

negative example, replace C with all of the clauses in
(C).

32

Learning EFS
S = T

for n = 1 forever
receive en = sn , bn 
while (0  j  n ej = sj ,   and sj L(S))

delete a clause C in S and add all
clauses

in (C)
output S

33

Example
S : p(axb)  p(y)

p(ab) 

E1= p(aabb), E2= p(ab), 
E3= p(abb), 

34

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(x) 

p(xy), p(a), p(b)p(x) p(x)

35

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(x) 

p(xy), p(a), p(b)p(x) p(x)
p(xyz) p(ay), p(by)p(xa), p(xb)
p(xy)p(x), p(xy)p(y)

36

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(x) 

p(xy), p(a), p(b)p(x) p(x)
p(xyz) p(ay), p(by)p(xa), p(xb)
p(xy)p(x), p(xy)p(y)
p(xxz), p(xyx), p(xyy), p(xyz)p(x),
p(xyz)p(y), p(xyz)p(z),

p(ayz), p(byz), …, p(xya), p(xyb),

37

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(x) 

p(xy), p(a), p(b)p(x) p(x)
p(xyz) p(ay), p(by)p(xa), p(xb)
p(xy)p(x), p(xy)p(y)
p(xxz), p(xyx), p(xyy), p(xyz)p(x),
p(xyz)p(y), p(xyz)p(z),

p(ayz), p(byz), …, p(xya), p(xyb),
p(ba), p(bb), p(bxy), p(by)p(y),

38

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(x) 

p(xy), p(a), p(b)p(x) p(x)
p(xyz) p(ay), p(by)p(xa), p(xb)
p(xy)p(x), p(xy)p(y)
p(xxz), p(xyx), p(xyy), p(xyz)p(x),
p(xyz)p(y), p(xyz)p(z),

p(ayz), p(byz), …, p(xya), p(xyb),
p(aa), p(ab), p(axy), p(ay)p(y),
p(ba) p(ab)p(xya)p(xa)p(x)

39

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(a), p(b)p(x) p(x)

p(by)p(xa), p(xy)p(x), p(xy)p(y)
p(xxz), p(xyx), p(xyy), p(xyz)p(x),
p(xyz)p(y), p(xyz)p(z),

p(ayz), p(byz), …, p(xya), p(xyb),
p(aa), p(ab), p(ay)p(y),
p(bb)p(xyb)p(xb)p(x)

40

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(a), p(b)p(x) p(x)

p(by)p(xa), p(xy)p(x), p(xy)p(y)
p(xyx), p(xyy), p(xyz)p(x),
p(xyz)p(y), p(xyz)p(z),
p(ayz), p(byz), …, p(xya), p(xyb),
p(aa), p(ab), p(ay)p(y),
p(bb)p(xyb)p(xb)p(x)
p(ayy)p(byy)p(aaz), p(bbz), p(xyxyz)
p(xxz)p(x), p(xxz)p(z),

41

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = p(a), p(b)p(x) p(x)

p(by)p(xa), p(xy)p(x), p(xy)p(y)
p(xyx), p(xyy), p(xyz)p(x),
p(xyz)p(y), p(xyz)p(z),
p(ayz), p(byz), …, p(xya), p(xyb),
p(aa), p(ab), p(ay)p(y),
p(bb)p(xyb)p(xb)p(x)
p(ayy)p(byy)p(aaz), p(bbz), p(xyxyz)
p(xxz)p(x), p(xxz)p(z),

42

Example
E1= p(aabb), E2= p(ab), 
E3= p(bba), 
S = …

p(ayb)p(y),
p(ab),
…

43

Context Free Grammar

 A context free grammar is defined as G = (N, , P, S)
where

N is a finite set of non-terminal symbols (non-
terminals, syntactic categories).
 is a finite set of characters or terminals.
P is a set of rules (productions).
S  N is an initial state.

 A production is of the form A where
A is a non-terminal and  is a sequence of terminals and

non-terminals.
 Note: In general definition  can be an empty sequence 

In this course we do not allow  to be 

44

EFS and Formal Grammar

45

Context Free Grammar
 A context free grammar is defined as G = (N, , P, S)

where
N is a finite set of non-terminal symbols (non-
terminals, syntactic categories).
 is a finite set of characters or terminals.
P is a set of rules (productions).
S  N is an initial state.

 A production is of the form A where
A is a non-terminal and  is a sequence of terminals and

non-terminals.
 Note: In general definition  can be an empty sequence 

In this course we do not allow  to be 

46

Examples
G1 =

(N ={S},  ab, P ={S abS aSb}, S)
G2 = (N ={S, A, B},  ab,

P ={S aABA bBBB abb}, S)
G3 = (N ={S, A, B, C,},  abc,

P ={S aAS bBA aAA bC,
A b
B aB, B bB, C aA, C bC ,
C b}, S)

47

Examples(cont.)
G5 = (N ={S},  ={ a, b, c, +, *, (,)},

P={S (S + S) , S (S * S),
S a, S b, S c}, S)

48

Derivations
 An application of a production rule A  P is written

as  A     where   (N)*

 This means that only one occurrence of A in a string is replaced
with 

S  S + S   V  S + S 
S  S + S   S  V + S 
S  S + S   V  V + V 

 A derivation from  to  is a finite sequence of
applications starting with  and ending with :

  n 
We write  if  or there is a derivation from 
to .

49

Context Free Languages
 The language defined a context free grammar G = (N, ,

P, S) is L(G) = { w  * | there is a derivation S w }.

 A language L is context free if there is a context free
grammar G such that L = L(G).

Example For G = ({S}, {ab }, {S abS aSb}, S),
L(G) = { anbn | n  .

50

Example 1
 ab
 L = { anbn | n   = { a…ab…b | n  

n times n times

abaabbaaabbbaaaabbbb
 The language is defined with a set of productions:

S abS aSb
 Some examples of derivations:

S ab
S aSb aabb
S aSb aaSbb aaabbb
S aSb aaSbb aaaSbbb aaaabbbb

 It is easy to show that there is no FA which accepts L.
51

Example 2
 Mathematical formulae consisting of x, y, +, *, (, and)

correct: x + y , y * (x + y) , ((x * x) + x) , x , …
incorrect: x + , (y * x + y , (), …

Note: We assume strict use of (and).
correct: (x + y), (x)
incorrect: x * x * x , y * x + x

 The set are defined by a set of rules
S V V x
S S + S V y
S S * S
S S 

52

Example 2 (cont.)
 An example of a derivation:

S V S S  S V x
S S + S S S  V y

S S  S S  S  S  S + S 
 V  S + S  V  V + V 
 y  V + V  y  x + V  y  x + y 

53

Transforming CFG to EFS
 For every production rule

P w1 Q1w2 Q2…Qnwn+1 P,Q  wi

we define a definite clause
p(w1 x1w2 x2…xnwn+1) q1x1q2x2qnxn

Example
P aPb p(axb)p(x)
P ab p(ab)

54

Derivation and Proof

55

p(axb)p(x)
p(ab)

p(axb)p(x)
p(axb)p(x) p(aabb)p(ab) p(ab)

p(aaabbb)p(aabb) p(aabb)
p(aaabbb)

P aPb
P ab

P aPb aaPbb aaabbb

Notes
 There is a class of EFS which corresponds to the context

sensitive grammar.
 There is a class of EFS which corresponds to TM.
 It is not easy to check which class L(p, S) belongs to

p(xx)  p(x)
p(a) 

56

