
Computational Learning Theory
Learning Tree Patterns

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

Contents
 Rooted, Ordered, Labeled and Ranked Trees
 Formal tree languages and tree patterns.
 Learning tree languages from positive data

Formal Languages
  : a finite set of symbols and called an alphabet
  : the set of all finite strings consisting of the symbols

in 
 An empty string is denoted by .
   {}

 A formal language L on is a subset of .
Example

ab
  abaaabbabb aaaaab
L aababb aaabaabbabababbb

Trees (1)
 Trees are very popular data structure in computer science.

size

dangerous

safe

large

animal

small
medium

dangerous

animal
cat bear

safe dangerous

horse bear

TABLE

TR TR

TD TD TD TD

a b c d

Trees (2)
 Trees are very popular data structure in computer science.

a b
c d

<TABLE>
<TR>

<TD>a</TD>
<TD>b</TD>

</TR>
<TR>

<TD>c </TD>
<TD>d</TD>

</TR>
</TABLE>

Typical Usage of Trees

 We introduced two types of usage of trees:
 guidance of activity, e.g. representing classification,

representing classification, and so on.
 data with structure, e.g. parsing trees (results of parsing) …

 In this lecture we treat “tree” as data.

Definition of Trees
 Generally a tree is an acyclic graph.

edge

node

tree non-tree

Classes of trees (1)
 If a node in a tree T is selected, T is called a rooted tree.
 A rooted tree is regarded as a directed graph by giving the

direction to every edge so that we can reach every leaf
from the root.

Classes of trees (2)
 Let  be a finite set of symbols and called an alphabet.
 A tree T is labeled if an label is attached to every node of

a tree T.

abfghp a

p

a

b

b

b

f

g

h

Classes of trees (3)
 A rooted and labeled tree T is ordered if, for every non-

leaf node in T, an ordering is given to the set of its
children.
 That is, for every non-leaf node, the first child, the second child,

… are defined.

p p

f g h h g f

a b b b a a b a bb

Classes of trees (4)
 A rooted and labeled tree T is ranked if, for every non-

leaf node in T, the number of its children is fixed by tha
label attached to it.

a/0b/0f/2g/1h/2p/3
p f

f g h p g h

a b b b a a b p bf

The class treated in this lecture
 We treat rooted, labeled, ordered, and ranked trees.

 From now, a “tree” means that a rooted, labeled, ordered, and
ranked tree.

Expressing Trees

TABLE

TR TR

TD TD TD TD

a b c d

 The relation between HTML expressions and dom trees
shows that a tree is represented as an expression.

<TABLE>
<TR>

<TD>a</TD>
<TD>b</TD>

</TR>
<TR>

<TD>c </TD>
<TD>d</TD>

</TR>
</TABLE>

 With referring mathematical logic, we use simpler
expressions.

TABLE(TR(TD(a), TD(b)), TR(TD(c), TD(d)))

Application of Tree Patterns
 Extracting common “structure” from tree data

Formal Tree Languages
  : a finite set of symbols and called an alphabet

 To each symbol a non-negative integer called its rank is
attached.

  : the set of all rooted, labeled, ordered, and ranked
trees consisting of the symbols in 

 A formal tree language L on is a subset of .
Examples
a/0f/2
 af(a,a)f(f(a,a),a)f(a,f(a,a))f(f(a,a), f(a,a))�

z/0s/1 p/3
T zs(z) s(s(z))p(z,z,z)p(s(z),z,z), s(p(z,z,z))

Tree Patterns
 Let X be a countable set of variables

 Assuming  X = 
 and rank(x) = 0 for every variable.

 A tree pattern  is an element of TL( X)
Example

a/0f/2X= {x/0, y/0,…}
af(x,a)f(f(a, x),a)f(f(a, x), y)f(x,f(a, x))
We sometime assume that every variable in a pattern is indexed, in
the ordering of its first occurrence.

a/0f/2X= {x1/0, x2/0, x3/0,…}
f(x1,a)f(f(a, x1), x2)f(x1, f(a, x2))

Tree Patterns (2)
 Since we let the rank of any variable be 0, it can be

attached only to leaf nodes.
a/0f/2X= {x/0, y/0,…}
f(x, f(f(a, y), y))

f

x f

a

f y

y

f

x y

a

y a

x

Defining tree languages with tree
patterns

 A tree language defined with a tree pattern  is
{ = for some non-empty grounding substitution }

The language is denoted by L().
Examples
a/0f/2X= {x/0, y/0,…}
 af(a,a)f(f(a,a),a)f(a,f(a,a))f(f(a,a), f(a,a))

TLf(x,a) f(a,a)f(a,a)f(f(a,a),a)f(f(f(a,a),a),a)
TLf(x,a) f(a,a)f(a,a)f(f(a,a),a)f(f(f(a,a),a),a)
TLf(x,f(a, x)) f(a,f(a, a))f(f(a,a),f(a, f(a,a)))

f(f(f(a,a),a),f(a, f(f(a,a),a)))
TLf(x,f(a, y)) f(a,f(a, a))f(a,f(a, f(a,a))) f(f(a,a),f(a,a))
 f(f(a,a),f(a, f(a,a)))
 f(a,f(a, f(f(a,a),a))))

 = {(x,), (y,)

Substitution(2)

f

x f

a

f y

y f

f f

a

f a

a

a a

a

f

a
a

 ={ (x, f(a,a)), (y, a) } = f(x,f(f(a, y), y)

 = f(f(a,a),f(f(a, a), a)

Substitution (1)
 A substitution is a set of pairs

 ={ (x1,1), (x2,2), …, (xn,n) }
where x1, x2, …, xn are distinct variables and

1, 2, …, n are patterns.
 Applying a substitution  to a tree pattern  is replacing

every variable xi in  with i simultaneously.
The result is denoted by  .

 The rank of any variable is 0, but any pattern can be  .
Examples

1 ={ (x, f(a,a)), (y, a) }
2 ={ (x, f(y,a)), (y, f(a,y)) }

f(x,x)1 f(f(a,a), f(a,a)) f(x,x)2 f(f(y,a), f(y,a))
f(x,f(a, y))1  f(f(a,a),f(a, a))
f(x,f(a, y))2 f(f(y,a),f(a, f(a, y)))

Substitution (2)

 A substitution  ={ (x1,1), (x2,2), …, (xn,n) } is non-
empty if all of 1, 2, …,n are in TL X).

 A substitution grounds a pattern if  TL().
Such  is called a grounding substitution for .

 A substitution  ={ (x1, y1), (x2, y2), …, (xn, yn) } is
variable renaming if y1, y2, …, yn are distinct varaibles.
 We regard two tree patterns equivalent when each one is

obtained from the other by renaming variables.
Examples

Two tree patterns f(x,a) and f(y,a) are equivalent, and they are
also equivalent to f(x1,a).
Two patterns f(f(x,a),f(y,x)) and f(f(y,a),f(x,y)) are equivalent,
and they are also equivalent to f(f(z,a),f(w,z)) and
f(f(x1,a),f(y1, x1))

Learning tree pattern languages
Example
C = {f(a,f(f(a,a),a))

f(f(a,a),f(f(a,a),a))
f(f(a,a),f(f(f(a,a),a),f(a,a)))
f(f(f(a,a),a),f(f(a,a),a)))

Positive Presentations

 A presentation of L() is a infinite sequence
consisting of positive and negative example.

 A presentation  is positive if  consists only of
positive example < s, +> and any positive example
occurs at least once in .

1, 2, 3, ... e1, e2, e3, ...


L()

Which patterns should be chosen?
 Intuitively, choose a minimal language which contains

all of the positive examples at the moment.
 That is, avoid over-generalization!

L(i)

L()
the set of positive examples.

Hasse Diagram : String Case
L(x)

L(xy)

L(xb) L(xyz) L(ax)

L(xyb) L(xxy) L(xay) L(axy)

L(xab) L(axb) L(xxb) L(aax)

L(aab)

Hasse Diagram : Tree Case
a/0f/2X= {x, y,…} TL (x)

TL(f(x, y))
TL(f(a, x)) TL(f(x,f(y, z))

TL(f(x,f(y, y)) TL(f(x,f(y, x)) TL(f(x,f(x, y))

TL(f(x,f(y, a)) TL(f(x,f(a, y)) TL(f(a,f(x, y))

TL(f(x,f(x, x))
TL(f(x,f(x, a)) TL(f(x,f(a, x)) TL(f(a,f(x, x))

TL(f(x,f(a,a)) TL(f(a,f(x,a)) TL(f(a,f(a,x))

TL(f(a,f(a,a))

Hasse Diagram : Tree Case
a/0f/2X= {x, y,…} TL (x)

TL(f(x, y))
TL(f(a, x)) TL(f(x,f(y, z))

TL(f(x,f(y, y)) TL(f(x,f(y, x)) TL(f(x,f(x, y))

TL(f(x,f(y, a)) TL(f(x,f(a, y)) TL(f(a,f(x, y))

TL(f(x,f(x, x))
TL(f(x,f(x, a)) TL(f(x,f(a, x)) TL(f(a,f(x, x))

TL(f(x,f(a,a)) TL(f(a,f(x,a)) TL(f(a,f(a,x))

TL(f(a,f(a,a))

C4: Finite thickness
 A class L(G) of languages has the finite thickness if

for all w * there are only a finite number of
languages in L(G) which contain w.

Theorem [Angluin] A class L(G) of languages is
identifiable in the limit from positive presentation if
if L(G) of languages has the finite thickness.

Analysis of Tree Patterns
Example a/0f/2X={x/0, y/0,…}

TLf(x,f(f(y,a), y))
 f(a,f(f(a,a),a))
 f(f(a,a),f(f(a,a),a))
 f(f(a,a),f(f(f(a,a),a),f(a,a)))
 f(f(f(a,a),a),f(f(a,a),a)))…
 f(f(f(f(a,a),a),a),f(f(a,a),a))) …}

Anti-Unification of Trees

f

f f

a

fa

a

a a

f

f

a

f

a

f

a a

f(x,f(f(y,a), z))
f(x,f(f(y,a), y))

f(a,f(f(a,a),a)) f(f(a,a),f(f(f(a,a),a),f(a,a)))

f

a a

Anti-Unification of Trees

f

f f

a

fa

a

a a

f

f

a

f

a

f

a a

f(x,f(f(y,a), y))
f(x,f(f(y,a), y))

f(a,f(f(a,a),a)) f(f(a,a),f(f(f(a,a),a),f(a,a)))

f

a a

We can know that variables
are assigned to these nodes.

Anti-Unification of Trees

f

f f

a

f a

a

a a

f

f

a

f

a

f

a a

f(x,f(f(y,a), y))

f(a,f(f(f(a,a),a),f(a,a))) f(f(a,a),f(f(a,a),a))

f

a a

Anti-Unification of Trees

f

f f

a

f a

a

a a

f

f

a

f

a

f

a a

f(x,f(f(y,a), y))

f(a,f(f(f(a,a),a),f(a,a))) f(f(a,a),f(f(a,a),a))

f

a a

We can know that variables
assigned to these nodes are
different/

Characteristic Set of L()

 Let  be a pattern which contains variables x1, x2, ..., xn.
Consider the following substitutions:

1 = {(x1, t), (x2, a), ..., (xn, a)},
…
n = {(x1, a), (x2, a), ..., (xn, t)}

where t is a tree different from a, e.g. f(a,a) .
 The set {1, n} is a characteristic set of L().

Anti-Unification Algorithm

f

f f

a

f a

a

a a

f

f

a

f

a

f

a af

a a

1. Compare two trees from their roots.
2. If different labels are attached to nodes on a same

position, replace the labels with a variable with an
index which indicates the difference.

xa,f(a,a)

xf(a,a),a
xf(a,a),a

Anti-Unification Algorithm
<f(a,f(f(f(a,a),a),f(a,a)))f(f(a,a),f(f(a,a),a))>
<f(a,f(f(f(a,a),a),f(a,a)))f(f(a,a),f(f(a,a),a))>
<f(xa,f(a,a),f(f(f(a,a),a),f(a,a)))f(xa,f(a,a),f(f(f(a,a),a),a))>
<f(xa,f(a,a),f(f(f(a,a),a),f(a,a)))f(xa,f(a,a),f(f(a,a),a))>
<f(xa,f(a,a),f(f(f(a,a),a),f(a,a)))f(xa,f(a,a),f(f(a,a),a))>
<f(xa,f(a,a),f(f(xf(a,a),a,a),f(a,a)))f(xa,f(a,a),f(f(xf(a,a),a,a),a))>
<f(xa,f(a,a),f(f(xf(a,a),a,a),f(a,a)))f(xa,f(a,a),f(f(xf(a,a),a,a),a))>
<f(xa,f(a,a),f(f(xf(a,a),a,a), xf(a,a),a))
 f(xa,f(a,a),f(f(xf(a,a),a,a), xf(a,a),a))>

 f(x,f(f(y,a), y))>

Theorem By applying the anti-unification to all given
examples at each moment, the learning machine EX-
identifies the class of all tree pattern languages in the limit
from positive presentations.

Identification of tree patterns

Origin of Learning Tree Patterns
G. Plotkin: Automatic Methods of Inductive
Inference, 1971.

G. Plotkin
The Royal Society:
Plotkin has contributed to Artificial Intelligence, Logic, Linguistics
and especially to Computer Science. In AI he worked on hypothesis-
formation and universal unification; in Logic, on frameworks for
arbitrary logics; in Linguistics, on formalising Situation Theory.
His main general contribution has been to establish a semantic
framework for Computer Science, especially programming
languages. Particular significant results are in the lambda-calculus
(elementary models, definability, call-by-value), non-determinism
(powerdomain theory), semantic formalisms (structured operational
semantics, metalanguages), and categories of semantic domains
(coherent, pro-finite, concrete). Further contributions concern the
semantic paradigm of full abstraction, concurrency theory (event
structures), programming logic and type theory.

ID Class Size Color Animal
a dangerous small black bear
b dangerous medium black bear
c dangerous large black dog
d safe small black cat
e safe medium black horse
f dangerous large black horse
g dangerous large brown horse

Example[Plotkin71]

x. black(x) dangerous(x)
x. large(x) horse(x)dangerous(x)

