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Learning Automata
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Learning Problems
 Find an FA which accepts the strings in C and 

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb
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What is an Automaton?
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

Machines of this type are called finite state automata.

 A change of observed 
squares left to right 
only, together with a 
possible change of 
state of mind. 

 No change of symbols 
in the squares. 
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Distinguishing Strings with a FA 
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

L() aababbaaabaabbabab

 The input string is 
accepted by the 
finite state 
automaton iff the 
transition ends at a 
finial state.

 The set of all strings 
accepted by the 
automaton is a 
formal language. 
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Table Representation(1)
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

 The automaton is 
represented in the 
form of a table. 

F a b
q0 q1 q3

q1 q1 q2

q2 v q1 q2

q3 q3 q3
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Table Representation(2)
 Mathematically, a finite state automaton is represented 

in the form  M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function 

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm
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Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

L(M0) =  L(M0) = 

8



Equivalence of REs and FAs
Theorem [McNorton-Yamada]
 Every regular expression R can be transformed 

into a finite state automaton so that L(R) = L(M).
 Every finite state automaton M can be transformed 

into a regular expression R so that L(M) = L(R).
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McNorton-Yamada’s Method(1)
 Step 1. Let Rij is the regular expression representing 

the set of symbols which directly transits from qi to qj . 
If a transition from qi to itself exists, add  to the set. 

R00 = a + , R11 = + , R22 = b + , 
R01 = b,  R02 = , R10 = b, R12 = a, 
R20 = , R21 = a, 

10

q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(2)
 Step 0a. Let R0

ii is the regular expression representing 
the set of strings which transits from qi to itself
directly or via q0.

R0
11 = R11+ R10(R00)* R01

= ( + (b +  (a + * (b + 
 + b a* b
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(3)
 Step 0b. Let R0

ij is the regular expression representing 
the set of strings which transits from qi to qj

directly or via q0.

R0
12 = R12+ R10(R00)* R02

= a + (b +  (a + * 
a 
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(4)
 Step 1. Let R1

ij is the regular expression representing 
the set of strings which transits from qi to qj

directly, or via q0 or q1.

R1
02 = R0

02+ R0
01(R0

11)* R0
12 =

=  + (a* b ( + b a* b* (a
b + a* ba + + a* b (b a* b)* a
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(4)
 Step 2. Let R2

ij is the regular expression representing 
the set of strings which transits from qi to qj

directly, or via q0 or q1 or q2.

R2
02 = R1

02+ R1
01(R1

11)* R1
12
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(6)
 Step k. Let Rk

ij is the regular expression representing the 
set of strings which transits from qi to qj

directly, or via q0 or q1 or … or qk.

R2
02 = R1

02+ R1
01(R1

11)* R1
12
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q0 q2

b

a
a

q1
b

b

a



Formulation of Learning FA
 Formulation of Learning

argminMFA ( x Data Loss(M, x) +  P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with 
a sign such that s = + if w C and s =  if w D,

0  if     x = <w, + > and w L(M )
Loss(M, x) = or x = <w,  > and w  L(fM),

otherwise,
P(M) : the number of states in M
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton. 
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn  L(k )) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk 

 With which M’ should we replace ?

 Assume we have a method to generate a new 
automaton.
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Simple Strategy of Learning

 With referring the existence of minimum FA, we can 
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small 
to large according to their sizes.
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Representation of Finite State Automata  

 Mathematically, a finite state automaton is represented 
in the form  M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function 

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm
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Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0  q0 q0

L(M0) =  L(M0) = 
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Generation by Enumeration
 We can make an infinite but effective 

enumeration of  all automata, because 
every automaton can be represented
as a transition table.

 This means that we can have an infinite 
sequence of automata 
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced 
with M’ = Mi+1.

F a1 … an

q0

…

qm
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Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0
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Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let  k = 0
forever

let  k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’ )) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk 

Assume a procedure of enumerating all FA so that 
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …
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Some Properties of the Algorithm

 The algorithm always terminates because 
for any pair of C and D (C D = 
there exists a finite state automaton M such that  
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If  the enumeration is made so that “smaller automata 
appear earlier”, the algorithm returns the smallest 
automaton M such that 

L(M)  C and L(M) D = 
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Note 1
 There might be several automata consistent with  

given C and D.
 For any finite set C , we can easily construct 

a finite state automaton which accepts only the 
strings in C, and rejects all strings not contained 
in C. 
 The FA is called a prefix tree automaton.
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Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b
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Prefixes of a String
Definition A string u  is a prefix of another string s

There exists a string v such that  s = uv.
For a set S , we let 

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab, 
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}. 
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Prefix Tree Automata
Definition A prefix tree automaton of a finite set S 
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where 

QP(S) = { qs | s P(S) }, 
qs, c) = qsc if sP(S) and sc P(S), 

QS = { qs | s S }

aqab qabaqaq
bas = aba
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Note 
 The automaton does not satisfy the mathematical 

definition because, for example, no transition from q0 is 
defined for the symbol b. 
 This means that  is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special 
state q (called a dead state) and letting every missing 
value of  be q.

 Under assuming this recover, we 
modify the definition.

q

a, b
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Finite state automata (3)  
 A finite state automata is defined as 

M = (, Q, , q0, F)
where 

Q is a set of states
 : Q×  Q is a partial transition function 

represented as a transition table
q0  Q is an initial state
F  Q is a set of final state
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Is the automaton pleasant? 
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C. 
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added 
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general 

guesses from examples. 
 The prefix automaton tree overgeneralize the set D of negative 

examples.
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Note 2 
 There is a  minimum one in the sense that the number of 

states in it is minimum.
 Unfortunately it is proved that the problem of finding a 

minimum automaton consistent with  given C and D is 
NP-hard.
 The activity of a learning algorithm should not be evaluated 

(justified) only on the viewpoint of optimization. 
 Even though it were not ensured that the algorithm returns the 

best solution, the algorithm could work as “learning”.
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Generalization by Merging 
States
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Generalization by Merging States
 The prefix tree T can be transformed into a more 

general automaton by merging several states into 
one states.
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Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b
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Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a
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Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general 
automaton, and 
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the 
second merge as far as possible.

c

c
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Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is 
a collection ={B1, B2,…, Bn} of subsets of Q satisfying 
1. every Bi is not empty,
2. Bi  Bj =  for every pair of i and j such that i  j,
3. B1  B2  Bn = .  

Every Bi is called a bock of  . 
 A block B = {q1, q2,…, qm } represents a state obtained 

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.  
To merge two blocks Bi and Bj means to revise to 
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.
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Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, , 
q0, F) is consistent 

for every block Bi ,  every pair p, q  Bi and 
every symbol c 
if both (p, c)  and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c)  Bj .

c

cp

q

Bi Bj
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Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is 
consistent we can define a partial function 

’ : ×  
and also an automaton M’ = (, , ’, B0, F’) with 

F’ = {Bi | some q Bi  is in F }.  
The automaton is denoted M/ . 
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RPNI Algorithm[Oncina and Gracia92] 
Regular  Positive Negative Inference (PRNI) Algorithm 
Inputs :  C   : a finite set of positive examples

D   : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s  P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi  Bi and qsj Bj such that Bi  Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 42



How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn] 

of P(C). 
 We had better use some order < and make the list so 

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or  

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b <  ab < ba < abb < bab
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Example: Merging States
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab, 
ba, abb,
bab 44



Example: Merging States(cont.)
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a
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Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

bbb b
a

a a



a

b
b b

a

a
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Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

a, b
bb b

a
a a



a

b b

a

b
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Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]


aaa

bbb b bb

a
aaa

bbb

a a



a

b
bb b bb

a



a

b b

a



a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b
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Effect of the Order (4)
 It is proved that the length-wise lexico-graphic 

order is better than its inverse. 
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Finding minimum FA
 Finding a minimum FA consistent with a finite 

amount of positive and  negative examples is 
NP-hard.

 The automata found by RPNI is not always 
minimal, but outputs in polynomial time 

card(C)2 card(D). 
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Data Sets Enough to Output 
Hidden Automata
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Minimal Test Sets

 A set S   is a minimal test set for a FA M if for each 
state q of M, there exists exactly one string x such that  
(q0, x) = qi.

q0

q2q3

b a

a

b

q1

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab} 
and  S2 = {, a, ab, b}.

a

b
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Minimal Test Sets
 Intuitively, a test set gives a “skelton” of the finite state 

automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab} 
and  S2 = {, a, ab, b}.
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Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and 

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a 
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example  Both S1 = {, a, aa, 
aab} and S2 = {, a, ab, b} are 
prefix closed.
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Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and 

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a 
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example  Both S1 = {, a, aa, 
aab} and S2 = {, a, ab, b} are 
prefix closed.
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Fixing an Order

 We fix one ordering for listing  elements of a set.

 Example Following the lexicographic ordering, elements of S1
= {, a, aa, aab} is listed as   , a, aa, aab

q0

q2q3

b a

a

b

q1

a

b

a

b
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 Assume an algorithm A which learns FA.
 Assume that we treat only minimal FA.
 A pair (C, D) of sets of examples is characteristic for a 

FA M if for any pair (C’, D’) of examples such that 
C C’  L(M) and D D’ L(M)

the algorithm A returns M.

Characteristics Examples



L(M)

C

C’
D

D’
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a suffix closed set E  *
T : (S  S {0, 1}
 S  { sa | s  S and a   }
 The element of the position (s, w) 

shows whether or not the 
automaton M accepts sw.

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110
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How to construct the table
Input : a minimal FA A
Output : The characteristic set of polynomial size

S : = the minimal test set of A, E := {  }, S’ := S S, 
Generate (S, E, T);
while there exists w, v  S s.t. row(w) = row(v) but

T(wc, e) T(vc, e) for some c  and e  E
E : = E {ae}; 
Generate (S, E, T);

end while
C = { we |  w  S S, e  Eand T(wc, e) 
D = { we |  w  S S, e  Eand T(wc, e) 
return (C, D);
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Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

 S = {, a, aa, aab} 
 S ={a, aa, aaa, aaba

b, ab, aab, aabb} 
 E = {}.  
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Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

Because T() = T(aa), check 
whether or not T(a) = T(aaa), 
and 
whether or not T(b) = T(aab).
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Example
 E := E  {b}
 Fill all of the new elements of 

the extended table.  
 b

 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110
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Example
 There is no w and v in the S part s.t.

row(w) = row(v), end the loop.
 C = {a, ab, bb, aaa, aab, aaab, 

aaba, aabab}
D = {, b, aa, abb, aabb, aabbb}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
11

b a

a

b
a

b

a

b

00

0110
65



Consistent Table
 An observation table (S, E, T) is consistent if and only if 

for every pair w, v S such that row(w) = row(v), 
row(wc) = row(vc) for any c . 

 Intuitively, in a consistent table, every row in the S part can be 
regarded as one state of an automaton.

Proposition A consistent table T represents an automaton M 
such that, for w S  S  and e  accepts we if and 
only if T(w, e) 
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Characteristic Examples

Theorem Suppose T be the table obtained above method 
from M.  Then the pair (C, D) where

C ={we | w S  S  and e and T(w, e) = 1}
D ={we | w S  S  and e and T(w, e) = 0}

is characteristic w.r.t. the generate-and-test algorithm and 
M.
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The Myhill-Nerode Theorem

Theorem The following three statements are equivalent:
(1) The language L is accepted by some finite automaton.
(2) L is the union of some equivalence classes of a right 
invariant equivalence relation of finite index.
(3) Let equivalence relation RL be defined by: x RL y if and 
only if for all z xz is in L iff yz is in L. Then RL is 
finite index.

 An equivalence relation R is right invariant iff x R y 
implies xz R yz for all z

 The index of equivalence relation R is the number of 
equivalence classes.
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