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Learning Automata
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Learning Problems
 Find an FA which accepts the strings in C and 

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb
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What is an Automaton?
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

Machines of this type are called finite state automata.

 A change of observed 
squares left to right 
only, together with a 
possible change of 
state of mind. 

 No change of symbols 
in the squares. 
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Distinguishing Strings with a FA 
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

L() aababbaaabaabbabab

 The input string is 
accepted by the 
finite state 
automaton iff the 
transition ends at a 
finial state.

 The set of all strings 
accepted by the 
automaton is a 
formal language. 
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Table Representation(1)
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

 The automaton is 
represented in the 
form of a table. 

F a b
q0 q1 q3

q1 q1 q2

q2 v q1 q2

q3 q3 q3
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Table Representation(2)
 Mathematically, a finite state automaton is represented 

in the form  M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function 

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm
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Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

L(M0) =  L(M0) = 
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Equivalence of REs and FAs
Theorem [McNorton-Yamada]
 Every regular expression R can be transformed 

into a finite state automaton so that L(R) = L(M).
 Every finite state automaton M can be transformed 

into a regular expression R so that L(M) = L(R).
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McNorton-Yamada’s Method(1)
 Step 1. Let Rij is the regular expression representing 

the set of symbols which directly transits from qi to qj . 
If a transition from qi to itself exists, add  to the set. 

R00 = a + , R11 = + , R22 = b + , 
R01 = b,  R02 = , R10 = b, R12 = a, 
R20 = , R21 = a, 
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(2)
 Step 0a. Let R0

ii is the regular expression representing 
the set of strings which transits from qi to itself
directly or via q0.

R0
11 = R11+ R10(R00)* R01

= ( + (b +  (a + * (b + 
 + b a* b
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(3)
 Step 0b. Let R0

ij is the regular expression representing 
the set of strings which transits from qi to qj

directly or via q0.

R0
12 = R12+ R10(R00)* R02

= a + (b +  (a + * 
a 
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(4)
 Step 1. Let R1

ij is the regular expression representing 
the set of strings which transits from qi to qj

directly, or via q0 or q1.

R1
02 = R0

02+ R0
01(R0

11)* R0
12 =

=  + (a* b ( + b a* b* (a
b + a* ba + + a* b (b a* b)* a
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(4)
 Step 2. Let R2

ij is the regular expression representing 
the set of strings which transits from qi to qj

directly, or via q0 or q1 or q2.

R2
02 = R1

02+ R1
01(R1

11)* R1
12
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q0 q2

b

a
a

q1
b

b

a



McNorton-Yamada’s Method(6)
 Step k. Let Rk

ij is the regular expression representing the 
set of strings which transits from qi to qj

directly, or via q0 or q1 or … or qk.

R2
02 = R1

02+ R1
01(R1

11)* R1
12
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q0 q2

b

a
a

q1
b

b

a



Formulation of Learning FA
 Formulation of Learning

argminMFA ( x Data Loss(M, x) +  P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with 
a sign such that s = + if w C and s =  if w D,

0  if     x = <w, + > and w L(M )
Loss(M, x) = or x = <w,  > and w  L(fM),

otherwise,
P(M) : the number of states in M
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton. 
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn  L(k )) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk 

 With which M’ should we replace ?

 Assume we have a method to generate a new 
automaton.
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Simple Strategy of Learning

 With referring the existence of minimum FA, we can 
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small 
to large according to their sizes.
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Representation of Finite State Automata  

 Mathematically, a finite state automaton is represented 
in the form  M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function 

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm
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Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0  q0 q0

L(M0) =  L(M0) = 
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Generation by Enumeration
 We can make an infinite but effective 

enumeration of  all automata, because 
every automaton can be represented
as a transition table.

 This means that we can have an infinite 
sequence of automata 
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced 
with M’ = Mi+1.

F a1 … an

q0

…

qm
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Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0
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Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let  k = 0
forever

let  k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’ )) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk 

Assume a procedure of enumerating all FA so that 
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …
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Some Properties of the Algorithm

 The algorithm always terminates because 
for any pair of C and D (C D = 
there exists a finite state automaton M such that  
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If  the enumeration is made so that “smaller automata 
appear earlier”, the algorithm returns the smallest 
automaton M such that 

L(M)  C and L(M) D = 
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Note 1
 There might be several automata consistent with  

given C and D.
 For any finite set C , we can easily construct 

a finite state automaton which accepts only the 
strings in C, and rejects all strings not contained 
in C. 
 The FA is called a prefix tree automaton.
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Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b
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Prefixes of a String
Definition A string u  is a prefix of another string s

There exists a string v such that  s = uv.
For a set S , we let 

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab, 
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}. 
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Prefix Tree Automata
Definition A prefix tree automaton of a finite set S 
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where 

QP(S) = { qs | s P(S) }, 
qs, c) = qsc if sP(S) and sc P(S), 

QS = { qs | s S }

aqab qabaqaq
bas = aba
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Note 
 The automaton does not satisfy the mathematical 

definition because, for example, no transition from q0 is 
defined for the symbol b. 
 This means that  is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special 
state q (called a dead state) and letting every missing 
value of  be q.

 Under assuming this recover, we 
modify the definition.

q

a, b
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Finite state automata (3)  
 A finite state automata is defined as 

M = (, Q, , q0, F)
where 

Q is a set of states
 : Q×  Q is a partial transition function 

represented as a transition table
q0  Q is an initial state
F  Q is a set of final state
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Is the automaton pleasant? 
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C. 
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added 
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general 

guesses from examples. 
 The prefix automaton tree overgeneralize the set D of negative 

examples.
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Note 2 
 There is a  minimum one in the sense that the number of 

states in it is minimum.
 Unfortunately it is proved that the problem of finding a 

minimum automaton consistent with  given C and D is 
NP-hard.
 The activity of a learning algorithm should not be evaluated 

(justified) only on the viewpoint of optimization. 
 Even though it were not ensured that the algorithm returns the 

best solution, the algorithm could work as “learning”.
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Generalization by Merging 
States
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Generalization by Merging States
 The prefix tree T can be transformed into a more 

general automaton by merging several states into 
one states.
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Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b
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Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a
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Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general 
automaton, and 
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the 
second merge as far as possible.

c

c
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Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is 
a collection ={B1, B2,…, Bn} of subsets of Q satisfying 
1. every Bi is not empty,
2. Bi  Bj =  for every pair of i and j such that i  j,
3. B1  B2  Bn = .  

Every Bi is called a bock of  . 
 A block B = {q1, q2,…, qm } represents a state obtained 

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.  
To merge two blocks Bi and Bj means to revise to 
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.
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Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, , 
q0, F) is consistent 

for every block Bi ,  every pair p, q  Bi and 
every symbol c 
if both (p, c)  and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c)  Bj .

c

cp

q

Bi Bj
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Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is 
consistent we can define a partial function 

’ : ×  
and also an automaton M’ = (, , ’, B0, F’) with 

F’ = {Bi | some q Bi  is in F }.  
The automaton is denoted M/ . 
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RPNI Algorithm[Oncina and Gracia92] 
Regular  Positive Negative Inference (PRNI) Algorithm 
Inputs :  C   : a finite set of positive examples

D   : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s  P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi  Bi and qsj Bj such that Bi  Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 42



How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn] 

of P(C). 
 We had better use some order < and make the list so 

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or  

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b <  ab < ba < abb < bab
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Example: Merging States
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab, 
ba, abb,
bab 44



Example: Merging States(cont.)
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a
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Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

bbb b
a

a a



a

b
b b

a

a
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Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

a, b
bb b

a
a a



a

b b

a

b
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Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]


aaa

bbb b bb

a
aaa

bbb

a a



a

b
bb b bb

a



a

b b

a



a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b
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Effect of the Order (4)
 It is proved that the length-wise lexico-graphic 

order is better than its inverse. 
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Finding minimum FA
 Finding a minimum FA consistent with a finite 

amount of positive and  negative examples is 
NP-hard.

 The automata found by RPNI is not always 
minimal, but outputs in polynomial time 

card(C)2 card(D). 
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Data Sets Enough to Output 
Hidden Automata
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Minimal Test Sets

 A set S   is a minimal test set for a FA M if for each 
state q of M, there exists exactly one string x such that  
(q0, x) = qi.

q0

q2q3

b a

a

b

q1

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab} 
and  S2 = {, a, ab, b}.

a

b
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Minimal Test Sets
 Intuitively, a test set gives a “skelton” of the finite state 

automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab} 
and  S2 = {, a, ab, b}.
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Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and 

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a 
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example  Both S1 = {, a, aa, 
aab} and S2 = {, a, ab, b} are 
prefix closed.
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Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and 

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a 
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example  Both S1 = {, a, aa, 
aab} and S2 = {, a, ab, b} are 
prefix closed.
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Fixing an Order

 We fix one ordering for listing  elements of a set.

 Example Following the lexicographic ordering, elements of S1
= {, a, aa, aab} is listed as   , a, aa, aab

q0

q2q3

b a

a

b

q1

a

b

a

b
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 Assume an algorithm A which learns FA.
 Assume that we treat only minimal FA.
 A pair (C, D) of sets of examples is characteristic for a 

FA M if for any pair (C’, D’) of examples such that 
C C’  L(M) and D D’ L(M)

the algorithm A returns M.

Characteristics Examples



L(M)

C

C’
D

D’
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a suffix closed set E  *
T : (S  S {0, 1}
 S  { sa | s  S and a   }
 The element of the position (s, w) 

shows whether or not the 
automaton M accepts sw.

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110
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How to construct the table
Input : a minimal FA A
Output : The characteristic set of polynomial size

S : = the minimal test set of A, E := {  }, S’ := S S, 
Generate (S, E, T);
while there exists w, v  S s.t. row(w) = row(v) but

T(wc, e) T(vc, e) for some c  and e  E
E : = E {ae}; 
Generate (S, E, T);

end while
C = { we |  w  S S, e  Eand T(wc, e) 
D = { we |  w  S S, e  Eand T(wc, e) 
return (C, D);
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Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

 S = {, a, aa, aab} 
 S ={a, aa, aaa, aaba

b, ab, aab, aabb} 
 E = {}.  
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Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

Because T() = T(aa), check 
whether or not T(a) = T(aaa), 
and 
whether or not T(b) = T(aab).
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Example
 E := E  {b}
 Fill all of the new elements of 

the extended table.  
 b

 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110
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Example
 There is no w and v in the S part s.t.

row(w) = row(v), end the loop.
 C = {a, ab, bb, aaa, aab, aaab, 

aaba, aabab}
D = {, b, aa, abb, aabb, aabbb}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
11

b a

a

b
a

b

a

b

00

0110
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Consistent Table
 An observation table (S, E, T) is consistent if and only if 

for every pair w, v S such that row(w) = row(v), 
row(wc) = row(vc) for any c . 

 Intuitively, in a consistent table, every row in the S part can be 
regarded as one state of an automaton.

Proposition A consistent table T represents an automaton M 
such that, for w S  S  and e  accepts we if and 
only if T(w, e) 
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Characteristic Examples

Theorem Suppose T be the table obtained above method 
from M.  Then the pair (C, D) where

C ={we | w S  S  and e and T(w, e) = 1}
D ={we | w S  S  and e and T(w, e) = 0}

is characteristic w.r.t. the generate-and-test algorithm and 
M.
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The Myhill-Nerode Theorem

Theorem The following three statements are equivalent:
(1) The language L is accepted by some finite automaton.
(2) L is the union of some equivalence classes of a right 
invariant equivalence relation of finite index.
(3) Let equivalence relation RL be defined by: x RL y if and 
only if for all z xz is in L iff yz is in L. Then RL is 
finite index.

 An equivalence relation R is right invariant iff x R y 
implies xz R yz for all z

 The index of equivalence relation R is the number of 
equivalence classes.
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