
Computational Learning Theory
Learning Finite State Automata

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Learning Automata

2

Learning Problems
 Find an FA which accepts the strings in C and

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb

3

What is an Automaton?
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

Machines of this type are called finite state automata.

 A change of observed
squares left to right
only, together with a
possible change of
state of mind.

 No change of symbols
in the squares.

4

Distinguishing Strings with a FA
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

L() aababbaaabaabbabab

 The input string is
accepted by the
finite state
automaton iff the
transition ends at a
finial state.

 The set of all strings
accepted by the
automaton is a
formal language.

5

Table Representation(1)
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

 The automaton is
represented in the
form of a table.

F a b
q0 q1 q3

q1 q1 q2

q2 v q1 q2

q3 q3 q3

6

Table Representation(2)
 Mathematically, a finite state automaton is represented

in the form M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S× S is a transition function

represented as a transition table,
q0 S is an initial state,
F S is a set of final states.

F a1 … an

q0

…

qm

7

Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

L(M0) = L(M0) =

8

Equivalence of REs and FAs
Theorem [McNorton-Yamada]
 Every regular expression R can be transformed

into a finite state automaton so that L(R) = L(M).
 Every finite state automaton M can be transformed

into a regular expression R so that L(M) = L(R).

9

McNorton-Yamada’s Method(1)
 Step 1. Let Rij is the regular expression representing

the set of symbols which directly transits from qi to qj .
If a transition from qi to itself exists, add to the set.

R00 = a + , R11 = + , R22 = b + ,
R01 = b, R02 = , R10 = b, R12 = a,
R20 = , R21 = a,

10

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(2)
 Step 0a. Let R0

ii is the regular expression representing
the set of strings which transits from qi to itself
directly or via q0.

R0
11 = R11+ R10(R00)* R01

= (+ (b + (a + * (b +
 + b a* b

11

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(3)
 Step 0b. Let R0

ij is the regular expression representing
the set of strings which transits from qi to qj

directly or via q0.

R0
12 = R12+ R10(R00)* R02

= a + (b + (a + *
a

12

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(4)
 Step 1. Let R1

ij is the regular expression representing
the set of strings which transits from qi to qj

directly, or via q0 or q1.

R1
02 = R0

02+ R0
01(R0

11)* R0
12 =

= + (a* b (+ b a* b* (a
b + a* ba + + a* b (b a* b)* a

13

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(4)
 Step 2. Let R2

ij is the regular expression representing
the set of strings which transits from qi to qj

directly, or via q0 or q1 or q2.

R2
02 = R1

02+ R1
01(R1

11)* R1
12

14

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(6)
 Step k. Let Rk

ij is the regular expression representing the
set of strings which transits from qi to qj

directly, or via q0 or q1 or … or qk.

R2
02 = R1

02+ R1
01(R1

11)* R1
12

15

q0 q2

b

a
a

q1
b

b

a

Formulation of Learning FA
 Formulation of Learning

argminMFA (x Data Loss(M, x) + P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with
a sign such that s = + if w C and s = if w D,

0 if x = <w, + > and w L(M)
Loss(M, x) = or x = <w, > and w L(fM),

otherwise,
P(M) : the number of states in M

16

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton.
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn L(k)) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk

 With which M’ should we replace ?

 Assume we have a method to generate a new
automaton.

17

Simple Strategy of Learning

 With referring the existence of minimum FA, we can
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small
to large according to their sizes.

18

Representation of Finite State Automata

 Mathematically, a finite state automaton is represented
in the form M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S× S is a transition function

represented as a transition table,
q0 S is an initial state,
F S is a set of final states.

F a1 … an

q0

…

qm

19

Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 q0 q0

L(M0) = L(M0) =

20

Generation by Enumeration
 We can make an infinite but effective

enumeration of all automata, because
every automaton can be represented
as a transition table.

 This means that we can have an infinite
sequence of automata
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced
with M’ = Mi+1.

F a1 … an

q0

…

qm

21

Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

22

Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…

23

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let k = 0
forever

let k’ = k
for n = 1,2,…, N,

if (xn C and xn L(k’)) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk

Assume a procedure of enumerating all FA so that
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0) P(M1) P(M2) … P(Mi) …

24

Some Properties of the Algorithm

 The algorithm always terminates because
for any pair of C and D (C D =
there exists a finite state automaton M such that
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If the enumeration is made so that “smaller automata
appear earlier”, the algorithm returns the smallest
automaton M such that

L(M) C and L(M) D =

25

Note 1
 There might be several automata consistent with

given C and D.
 For any finite set C , we can easily construct

a finite state automaton which accepts only the
strings in C, and rejects all strings not contained
in C.
 The FA is called a prefix tree automaton.

26

Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b

27

Prefixes of a String
Definition A string u is a prefix of another string s

There exists a string v such that s = uv.
For a set S , we let

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab,
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}.

28

Prefix Tree Automata
Definition A prefix tree automaton of a finite set S
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where

QP(S) = { qs | s P(S) },
qs, c) = qsc if sP(S) and sc P(S),

QS = { qs | s S }

aqab qabaqaq
bas = aba

29

Note
 The automaton does not satisfy the mathematical

definition because, for example, no transition from q0 is
defined for the symbol b.
 This means that is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special
state q (called a dead state) and letting every missing
value of be q.

 Under assuming this recover, we
modify the definition.

q

a, b

30

Finite state automata (3)
 A finite state automata is defined as

M = (, Q, , q0, F)
where

Q is a set of states
 : Q× Q is a partial transition function

represented as a transition table
q0 Q is an initial state
F Q is a set of final state

31

Is the automaton pleasant?
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C.
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general

guesses from examples.
 The prefix automaton tree overgeneralize the set D of negative

examples.

32

Note 2
 There is a minimum one in the sense that the number of

states in it is minimum.
 Unfortunately it is proved that the problem of finding a

minimum automaton consistent with given C and D is
NP-hard.
 The activity of a learning algorithm should not be evaluated

(justified) only on the viewpoint of optimization.
 Even though it were not ensured that the algorithm returns the

best solution, the algorithm could work as “learning”.

33

Generalization by Merging
States

34

Generalization by Merging States
 The prefix tree T can be transformed into a more

general automaton by merging several states into
one states.

35

Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b

36

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a

37

Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general
automaton, and
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the
second merge as far as possible.

c

c

38

Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is
a collection ={B1, B2,…, Bn} of subsets of Q satisfying
1. every Bi is not empty,
2. Bi Bj = for every pair of i and j such that i j,
3. B1 B2 Bn = .

Every Bi is called a bock of .
 A block B = {q1, q2,…, qm } represents a state obtained

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.
To merge two blocks Bi and Bj means to revise to
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.

39

Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, ,
q0, F) is consistent

for every block Bi , every pair p, q Bi and
every symbol c
if both (p, c) and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c) Bj .

c

cp

q

Bi Bj

40

Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is
consistent we can define a partial function

’ : ×
and also an automaton M’ = (, , ’, B0, F’) with

F’ = {Bi | some q Bi is in F }.
The automaton is denoted M/ .

41

RPNI Algorithm[Oncina and Gracia92]
Regular Positive Negative Inference (PRNI) Algorithm
Inputs : C : a finite set of positive examples

D : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi Bi and qsj Bj such that Bi Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 42

How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn]

of P(C).
 We had better use some order < and make the list so

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b < ab < ba < abb < bab

43

Example: Merging States
C = {abb, bab}, D = {ab}

aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab,
ba, abb,
bab 44

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a

45

Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]

aaa

bbb b bb

a
aaa

bbb

a a

aaa

b
bb b bb

aa a

aaa
bbb

aaa

bbb b
a

a a

a

b
b b

a

a

46

Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]

aaa

bbb b bb

a
aaa

bbb

a a

aaa

b
bb b bb

aa a

aaa
bbb

aaa

a, b
bb b

a
a a

a

b b

a

b

47

Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]

aaa

bbb b bb

a
aaa

bbb

a a

a

b
bb b bb

a

a

b b

a

a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b

48

Effect of the Order (4)
 It is proved that the length-wise lexico-graphic

order is better than its inverse.

49

Finding minimum FA
 Finding a minimum FA consistent with a finite

amount of positive and negative examples is
NP-hard.

 The automata found by RPNI is not always
minimal, but outputs in polynomial time

card(C)2 card(D).

50

Data Sets Enough to Output
Hidden Automata

51

Minimal Test Sets

 A set S is a minimal test set for a FA M if for each
state q of M, there exists exactly one string x such that
(q0, x) = qi.

q0

q2q3

b a

a

b

q1

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab}
and S2 = {, a, ab, b}.

a

b

52

Minimal Test Sets
 Intuitively, a test set gives a “skelton” of the finite state

automaton.
 But the set is not sufficient to identify the FA.

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab}
and S2 = {, a, ab, b}.

53

Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA.

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Both S1 = {, a, aa,
aab} and S2 = {, a, ab, b} are
prefix closed.

54

Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA.

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Both S1 = {, a, aa,
aab} and S2 = {, a, ab, b} are
prefix closed.

55

Fixing an Order

 We fix one ordering for listing elements of a set.

 Example Following the lexicographic ordering, elements of S1
= {, a, aa, aab} is listed as , a, aa, aab

q0

q2q3

b a

a

b

q1

a

b

a

b

56

 Assume an algorithm A which learns FA.
 Assume that we treat only minimal FA.
 A pair (C, D) of sets of examples is characteristic for a

FA M if for any pair (C’, D’) of examples such that
C C’ L(M) and D D’ L(M)

the algorithm A returns M.

Characteristics Examples

L(M)

C

C’
D

D’

57

Observation table
 An observation table (S, E, T) :

S : a prefix closed set S *
E : a suffix closed set E *
T : (S S {0, 1}
 S { sa | s S and a }
 The element of the position (s, w)

shows whether or not the
automaton M accepts sw.

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S

58

Observation table
 An observation table (S, E, T) :

S : a prefix closed set S *
E : a set E *
T : (S S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S
q0

q2q3

b a

a

b

q1

a

b

a

b

59

Observation table
 An observation table (S, E, T) :

S : a prefix closed set S *
E : a set E *
T : (S S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110

60

How to construct the table
Input : a minimal FA A
Output : The characteristic set of polynomial size

S : = the minimal test set of A, E := { }, S’ := S S,
Generate (S, E, T);
while there exists w, v S s.t. row(w) = row(v) but

T(wc, e) T(vc, e) for some c and e E
E : = E {ae};
Generate (S, E, T);

end while
C = { we | w S S, e Eand T(wc, e)
D = { we | w S S, e Eand T(wc, e)
return (C, D);

61

Example

 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S
q0

q2q3

b a

a

b

q1

a

b

a

b

 S = {, a, aa, aab}
 S ={a, aa, aaa, aaba

b, ab, aab, aabb}
 E = {}.

62

Example

 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S
q0

q2q3

b a

a

b

q1

a

b

a

b

Because T() = T(aa), check
whether or not T(a) = T(aaa),
and
whether or not T(b) = T(aab).

63

Example
 E := E {b}
 Fill all of the new elements of

the extended table.
 b

 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110

64

Example
 There is no w and v in the S part s.t.

row(w) = row(v), end the loop.
 C = {a, ab, bb, aaa, aab, aaab,

aaba, aabab}
D = {, b, aa, abb, aabb, aabbb}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S
11

b a

a

b
a

b

a

b

00

0110
65

Consistent Table
 An observation table (S, E, T) is consistent if and only if

for every pair w, v S such that row(w) = row(v),
row(wc) = row(vc) for any c .

 Intuitively, in a consistent table, every row in the S part can be
regarded as one state of an automaton.

Proposition A consistent table T represents an automaton M
such that, for w S S and e accepts we if and
only if T(w, e)

66

Characteristic Examples

Theorem Suppose T be the table obtained above method
from M. Then the pair (C, D) where

C ={we | w S S and e and T(w, e) = 1}
D ={we | w S S and e and T(w, e) = 0}

is characteristic w.r.t. the generate-and-test algorithm and
M.

67

The Myhill-Nerode Theorem

Theorem The following three statements are equivalent:
(1) The language L is accepted by some finite automaton.
(2) L is the union of some equivalence classes of a right
invariant equivalence relation of finite index.
(3) Let equivalence relation RL be defined by: x RL y if and
only if for all z xz is in L iff yz is in L. Then RL is
finite index.

 An equivalence relation R is right invariant iff x R y
implies xz R yz for all z

 The index of equivalence relation R is the number of
equivalence classes.

68

