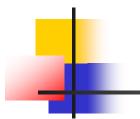
Computational Learning Theory Learning Finite State Automata

Akihiro Yamamoto 山本 章博

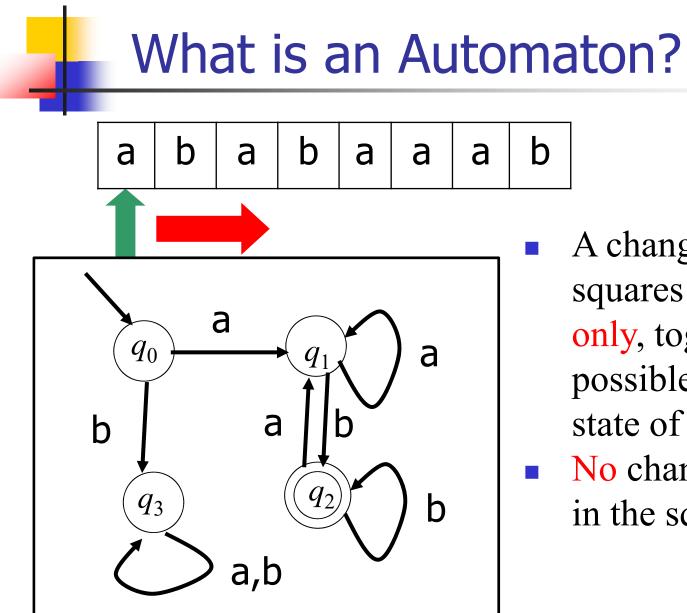
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/ akihiro@i.kyoto-u.ac.jp



Learning Automata

Learning Problems

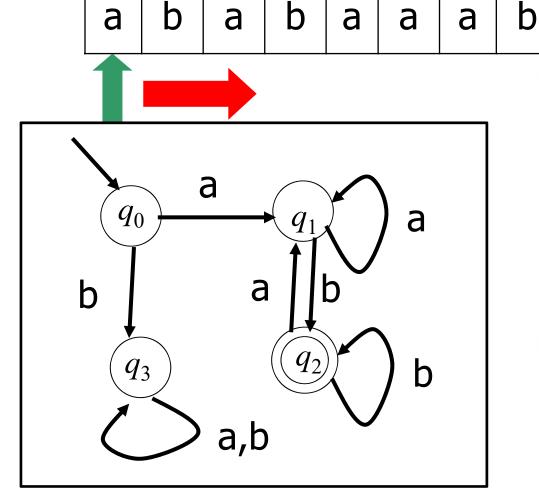
- Find an FA which accepts the strings in *C* and rejects the strings in *D*.
 - $C = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$
 - $D = \{a, b, bbbb, abba, baaaaba, babb\}$



- A change of observed squares left to right only, together with a possible change of state of mind.
- No change of symbols in the squares.

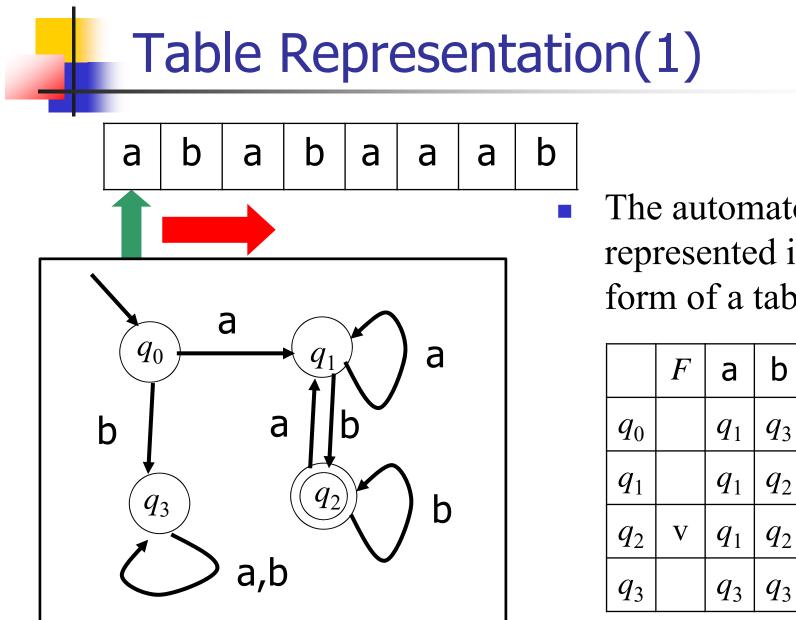
Machines of this type are called finite state automata.

Distinguishing Strings with a FA



- The input string is accepted by the finite state automaton iff the transition ends at a finial state.
- The set of all strings accepted by the automaton is a formal language.

 $L(M) = \{aab, abb, aaab, aabb, abab, ... \}$



The automaton is represented in the form of a table.

	F	а	b
q_0		q_1	q_3
q_1		q_1	q_2
q_2	V	q_1	q_2
q_3		q_3	q_3

Table Representation(2)

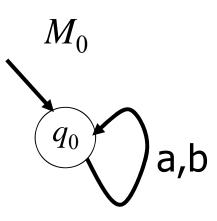
 Mathematically, a finite state automaton is represented in the form *M*=(Σ, S, δ, s₀, *F*)

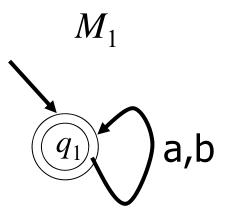
where

- $\boldsymbol{\Sigma}$ is the alphabet,
- S is a set of states,
- $\delta: S \times \Sigma \to S \text{ is a transition function}$ represented as a transition table,
- $q_0 \in S$ is an initial state,
- $F \subset S$ is a set of final states.

	F	a_1	•••	a_n
q_0				
•••				
q_m				

Finite Automata of One State





	F	а	b
q_0		q_0	q_0

$$L(M_0) = \emptyset$$

	F	а	b
q_0	V	q_0	q_0

$$L(M_0) = \Sigma^*$$

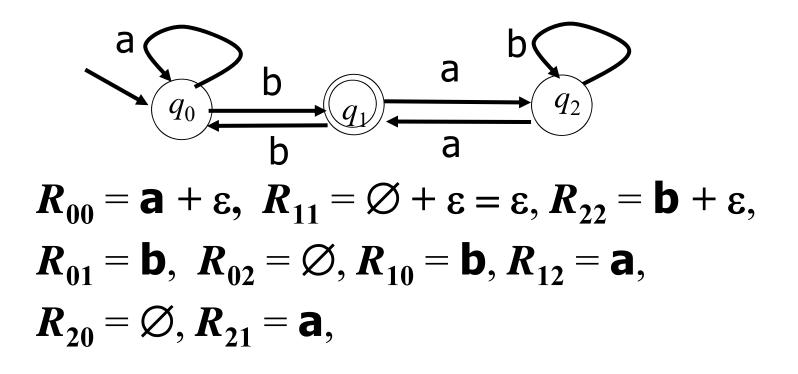
Equivalence of REs and FAs

Theorem [McNorton-Yamada]

- Every regular expression *R* can be transformed into a finite state automaton so that L(R) = L(M).
- Every finite state automaton *M* can be transformed into a regular expression *R* so that L(M) = L(R).

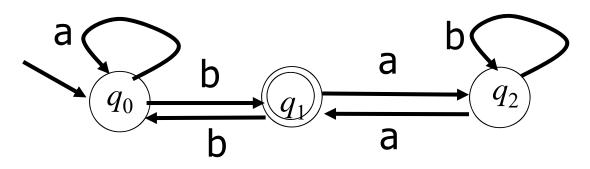
McNorton-Yamada's Method(1)

Step -1. Let *R_{ij}* is the regular expression representing the set of symbols which directly transits from *q_i* to *q_j*. If a transition from *q_i* to itself exists, add ε to the set.



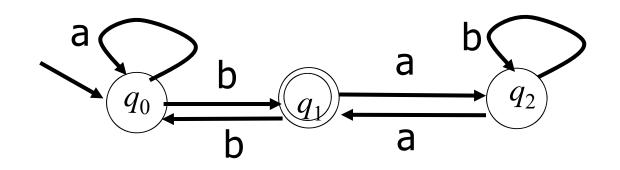
McNorton-Yamada's Method(2)

Step 0a. Let R⁰_{ii} is the regular expression representing the set of strings which transits from q_i to itself directly or via q₀.



McNorton-Yamada's Method(3)

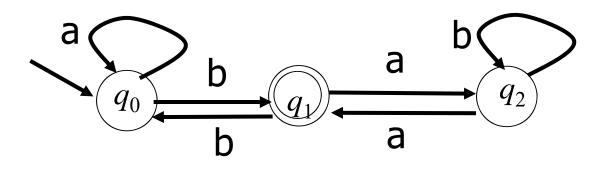
Step 0b. Let *R*⁰_{ij} is the regular expression representing the set of strings which transits from *q_i* to *q_j* directly or via *q*₀.



$$R_{12}^{0} = R_{12} + R_{10}(R_{00}) * R_{02}$$
$$= \mathbf{a} + (\mathbf{b} + \varepsilon) (\mathbf{a} + \varepsilon) * \emptyset$$
$$= \mathbf{a}$$

McNorton-Yamada's Method(4)

Step 1. Let *R*¹_{ij} is the regular expression representing the set of strings which transits from *q_i* to *q_j* directly, or via *q*₀ or *q*₁.

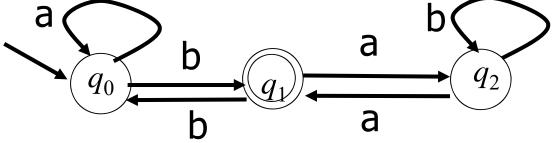


 $R^{1}_{02} = R^{0}_{02} + R^{0}_{01}(R^{0}_{11}) * R^{0}_{12} =$ = $\emptyset + (\mathbf{a} * \mathbf{b}) (\varepsilon + \mathbf{b} \mathbf{a} * \mathbf{b}) * (\mathbf{a})$ = $\mathbf{b} + \mathbf{a} * \mathbf{b} \mathbf{a} + \varepsilon + \mathbf{a} * \mathbf{b} (\mathbf{b} \mathbf{a} * \mathbf{b}) * \mathbf{a}$

McNorton-Yamada's Method(4)

• Step 2. Let R_{ij}^2 is the regular expression representing the set of strings which transits from q_i to q_j directly, or via q_0 or q_1 or q_2 .

 $= \sum_{n=1}^{\infty} (1 + q_0) (1 + q_1) (1 + q_2)$

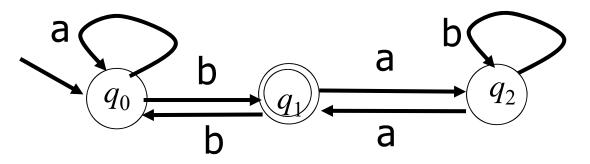


 $R^{2}_{02} = R^{1}_{02} + R^{1}_{01} (R^{1}_{11}) * R^{1}_{12}$

McNorton-Yamada's Method(6)

Step k. Let R^k_{ij} is the regular expression representing the set of strings which transits from q_i to q_j

directly, or via q_0 or q_1 or ... or q_k .



 $R^{2}_{02} = R^{1}_{02} + R^{1}_{01} (R^{1}_{11}) * R^{1}_{12}$

Formulation of Learning FA

• Formulation of Learning $\operatorname{argmin}_{M \in \mathsf{FA}} (\Sigma_{x \in Data} \operatorname{Loss}(M, x) + \lambda P(M))$

where FA : the set of all finite state automata,

Data : a finite set of pairs $x = \langle w, s \rangle$ of a string with a sign such that s = + if $w \in C$ and s = - if $w \in D$,

$$Loss(M, \mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} = \langle w, + \rangle \text{ and } w \in L(M) \\ \text{or } \mathbf{x} = \langle w, - \rangle \text{ and } w \notin L(fM), \\ \infty, \text{ otherwise,} \end{cases}$$

P(M): the number of states in M

A Simple Generate-and-Test Algorithm

Assume we have a method to generate a new automaton.

Let the input data $x_1, x_2, ..., x_N$ Initialize M as some automaton. for k = 1, 2, ... $M_k = M_{k-1}$ for n = 1, 2, ..., N, if $(x_n \in C \text{ and } x_n \notin L(M_k))$ or $(x_n \in D \text{ and } x_n \in L(M_k))$ replace M_k with another M'if $M_k = M_{k-1}$ terminate and output M_k

• With which *M*' should we replace *M*?

Simple Strategy of Learning

 With referring the existence of minimum FA, we can easily imagine a simple strategy of learning: Generate all FA, and enumerate them from small to large according to their sizes.

Representation of Finite State Automata

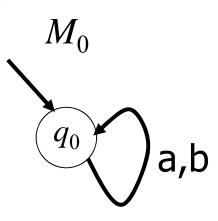
 Mathematically, a finite state automaton is represented in the form *M*=(Σ, S, δ, s₀, *F*)

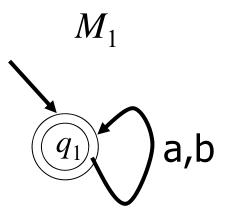
where

- Σ is the alphabet,
- S is a set of states,
- $\delta: S \times \Sigma \to S \text{ is a transition function}$ represented as a transition table,
- $q_0 \in S$ is an initial state,
- $F \subset S$ is a set of final states.

	F	a_1	•••	a_n
q_0				
•••				
q_m				

Finite Automata of One State





	F	а	b
q_0		q_0	q_0

$$L(M_0) = \emptyset$$

	F	а	b
q_0	\checkmark	q_0	q_0

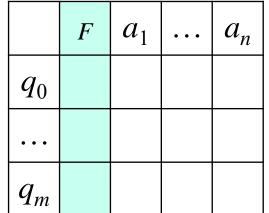
$$L(M_0) = \Sigma^*$$

Generation by Enumeration

- We can make an infinite but effective enumeration of all automata, because every automaton can be represented as a transition table.
 - This means that we can have an infinite sequence of automata

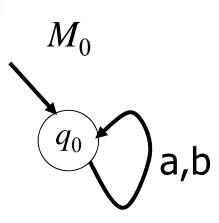
 M_1, M_2, \ldots

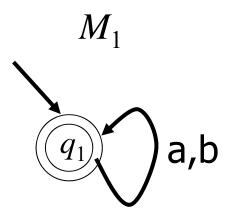
any automaton *M* appears as $M_i = M$.



• In the algorithm $M = M_i$ is just replaced with $M' = M_{i+1}$.

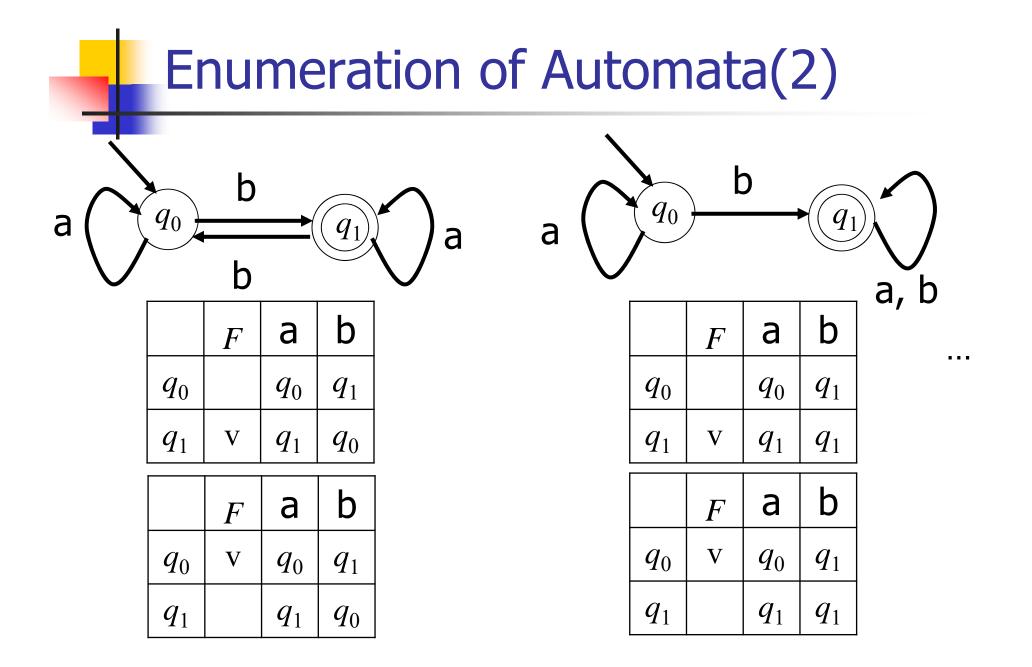
Enumeration of Automata(1)





	F	а	b
q_0		q_0	q_0

	F	а	b
q_0	V	q_0	q_0



A Simple Generate-and-Test Algorithm

Assume a procedure of enumerating all FA so that the enumeration $M_0, M_1, M_2, \dots, M_i, \dots$ satisfies $P(M_0) \le P(M_1) \le P(M_2) \le \dots \le P(M_i) \le \dots$

Let the input data $x_1, x_2, ..., x_N$ Initialize $M = M_0$ as an automaton consisting of one state let k = 0

forever

let
$$k' = k$$

for $n = 1, 2, ..., N$,
if $(x_n \in C \text{ and } x_n \notin L(M_{k'}))$ or $(x_n \in D \text{ and } x_n \in L(M_{k'}))$
replace k with $k + 1$
if $k' = k$
terminate and output M_k

Some Properties of the Algorithm

- The algorithm always terminates because for any pair of *C* and *D* (*C* ∩ *D* = Ø), there exists a finite state automaton *M* such that *L*(*M*) = *C* and *L*(*M*) ∩ *D* = Ø, and this *M* appears in the enumeration as *M_i* = *M*.
- If the enumeration is made so that "smaller automata appear earlier", the algorithm returns the smallest automaton *M* such that

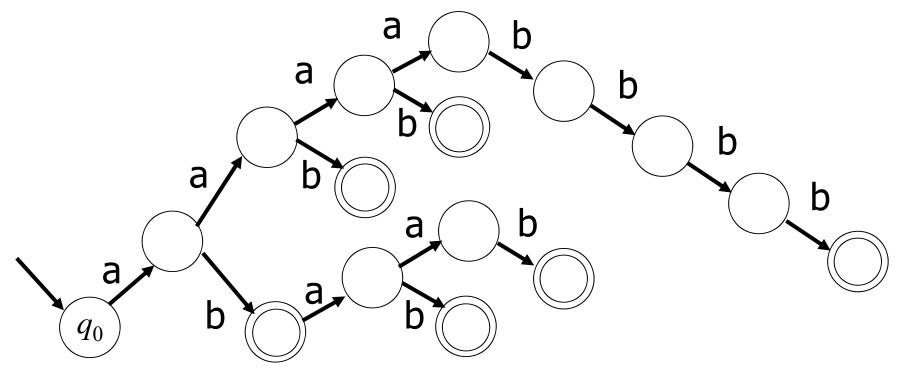
 $L(M) \subset C$ and $L(M) \cap D = \emptyset$.

Note 1

- There might be several automata consistent with given *C* and *D*.
- For any finite set $C \subset \Sigma^*$, we can easily construct a finite state automaton which accepts only the strings in *C*, and rejects all strings not contained in *C*.
 - The FA is called a prefix tree automaton.

Example

 $C_1 = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$ $D_1 = \{a, b, bbbb, abba, baaaaba, babb\}$



Prefixes of a String

Definition A string $u \in \Sigma^*$ is a prefix of another string $s \in \Sigma^*$ \Leftrightarrow There exists a string $v \in \Sigma^*$ such that s = uv. For a set $S \subseteq \Sigma^*$, we let $P(S) = \{ u \in \Sigma^* \mid u \text{ is a prefix of some } s \text{ in } S \}.$

Example The prefixes of aab are ε , a, aa, and aab, the prefixes of ab are ε , a, and ab, and so we have $P(\{ab, aab\}) = \{\varepsilon, a, aa, ab, aab\}.$

Prefix Tree Automata

Definition A prefix tree automaton of a finite set $S \subseteq \Sigma^*$ is defined as

$$M = (\Sigma, Q = Q_{P(S)}, \delta, q_0 = q_{\varepsilon}, F = Q_S)$$

where

$$Q_{P(S)} = \{ q_s \mid s \in P(S) \},\$$

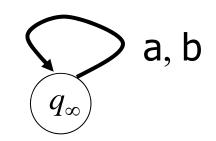
$$\delta(q_s, c) = q_{sc} \quad \text{if } s \in P(S) \text{ and } sc \in P(S),\$$

$$Q_S = \{ q_s \mid s \in S \}$$

$$s = aba$$
 q_{ϵ} a q_{a} b q_{ab} a q_{aba}

Note

- The automaton does not satisfy the mathematical definition because, for example, no transition from q₀ is defined for the symbol b.
 - This means that δ is not a mathematical function, but a partial function.
- This fault can be easily recovered by adding a special state q_∞ (called a dead state) and letting every missing value of δ be q_∞.
- Under assuming this recover, we modify the definition.



Finite state automata (3)

• A finite state automata is defined as

$$M = (\Sigma, Q, \delta, q_0, F)$$

where

Q is a set of states $\delta: Q \times \Sigma \rightarrow Q$ is a partial transition function represented as a transition table $q_0 \in Q$ is an initial state $F \subset Q$ is a set of final state

Is the automaton pleasant?

- The prefix tree automaton *T* overfits *C*.
 - It accepts no strings which is not in *C*.
 - It must be revised if new examples are added to *C*.
 - It is a natural to assume that positive examples and negative are added more experiments or observations are made.
- The prefix tree automaton *T* does not generalize *C*.
 - Intuitively learning should be activity of making general guesses from examples.
 - The prefix automaton tree overgeneralize the set *D* of negative examples.

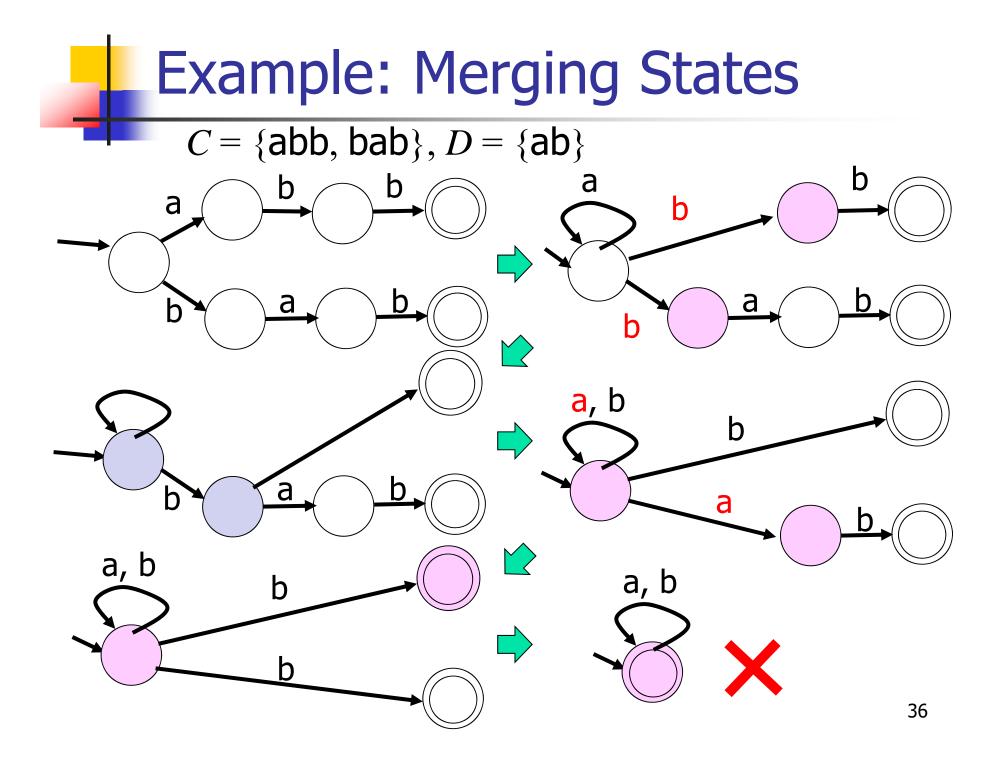
Note 2

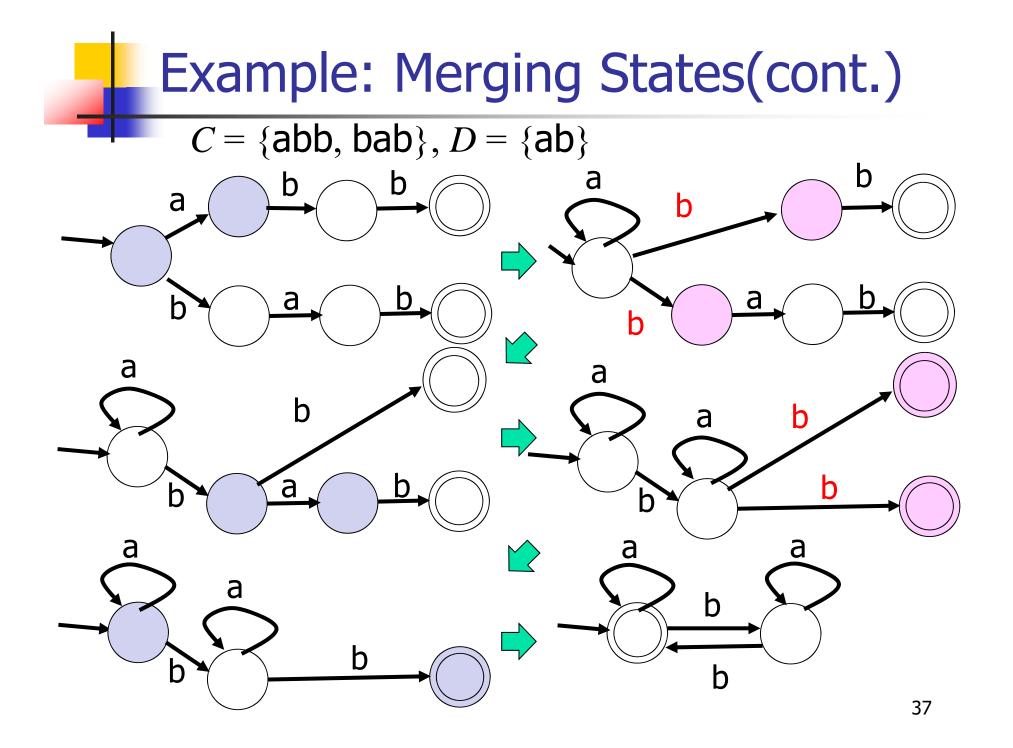
- There is a minimum one in the sense that the number of states in it is minimum.
- Unfortunately it is proved that the problem of finding a minimum automaton consistent with given C and D is NP-hard.
 - The activity of a learning algorithm should not be evaluated (justified) only on the viewpoint of optimization.
 - Even though it were not ensured that the algorithm returns the best solution, the algorithm could work as "learning".

Generalization by Merging States

Generalization by Merging States

The prefix tree T can be transformed into a more general automaton by merging several states into one states.

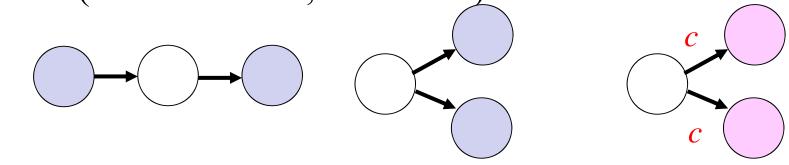




Two Types of Merge

- We have to treat two types of merge:
 - 1. Merging two states to generate a more general automaton, and
 - 2. Merging two states to keep the automaton deterministic

(in other words, consistent).



Strategy: first apply the first merge, and then try the second merge as far as possible.

Partitions and Blocks

Definition A partition of a set *Q* of states of a automaton, is a collection $\pi = \{B_1, B_2, ..., B_n\}$ of subsets of *Q* satisfying

- 1. every B_i is not empty,
- 2. $B_i \cap B_j = \emptyset$ for every pair of *i* and *j* such that $i \neq j$,
- 3. $B_1 \cup B_2 \cup \ldots \cup B_n = \emptyset$.

Every B_i is called a bock of π .

 A block B = {q₁, q₂,..., q_m} represents a state obtained by merging the states q₁, q₂,..., q_m into one.

Definition Let $\pi = \{B_1, B_2, ..., B_n\}$ be a partition of states. To merge two blocks B_i and B_j means to revise π to $\pi_{(i,j)} = \{B_1, B_2, ..., B_n\} - \{B_i, B_j\} \cup \{B_i \cup B_j\}.$

Consistent Partition

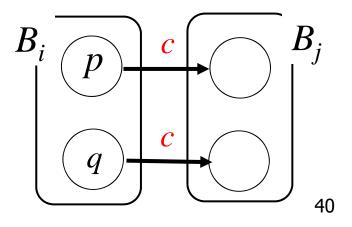
Definition A partition $\pi = \{B_1, B_2, ..., B_n\}$ for $M = (\Sigma, Q, \delta, q_0, F)$ is consistent

 \Leftrightarrow

for every block B_i , every pair $p, q \in B_i$ and every symbol $c \in \Sigma$,

if both $\delta(p, c)$ and $\delta(q, c)$ are defined, then

there is a block B_j such that both $\delta(p, c)$ and $\delta(q, c) \in B_j$.



Partitioned Automata

If a partition $\pi = \{B_1, B_2, ..., B_n\}$ for $M = (\Sigma, Q, \delta, q_0, F)$ is consistent we can define a partial function

$$\delta': \pi \times \Sigma \to \pi$$

and also an automaton $M' = (\Sigma, \pi, \delta', B_0, F')$ with

$$F' = \{B_i \mid \text{some } q \in B_i \text{ is in } F \}.$$

The automaton is denoted M/π .

RPNI Algorithm[Oncina and Gracia92]

Regular Positive Negative Inference (PRNI) Algorithm Inputs : $C \subset \Sigma^*$: a finite set of positive examples $D \subset \Sigma^*$: a finite set of negative examples Method : Make a list $[s_1, s_2, ..., s_n]$ of elements in P(C) Make the prefix automaton M of C; k = 0; $\pi_0 = \{\{q_s\} | s \in P(C)\}$ for i = 2 to nfor j = 1 to i - 1if $q_{si} \in B_i$ and $q_{si} \in B_i$ such that $B_i \neq B_i$ let π ' be the partition obtained by merging B_i and B_i while π ' is not consistent Choose a pair $q' \in B'$ and $q'' \in B''$ violating the consistency $\pi' :=$ the partition obtained by merging *B*' and *B*'' in π' if M/π ' rejects all strings in D $\pi_k := \pi'; k := k+1$ Output M/π_k 42

How to make the list of examples

- We have to fix a method of making the list $[s_1, s_2, ..., s_n]$ of P(*C*).
- We had better use some order < and make the list so that

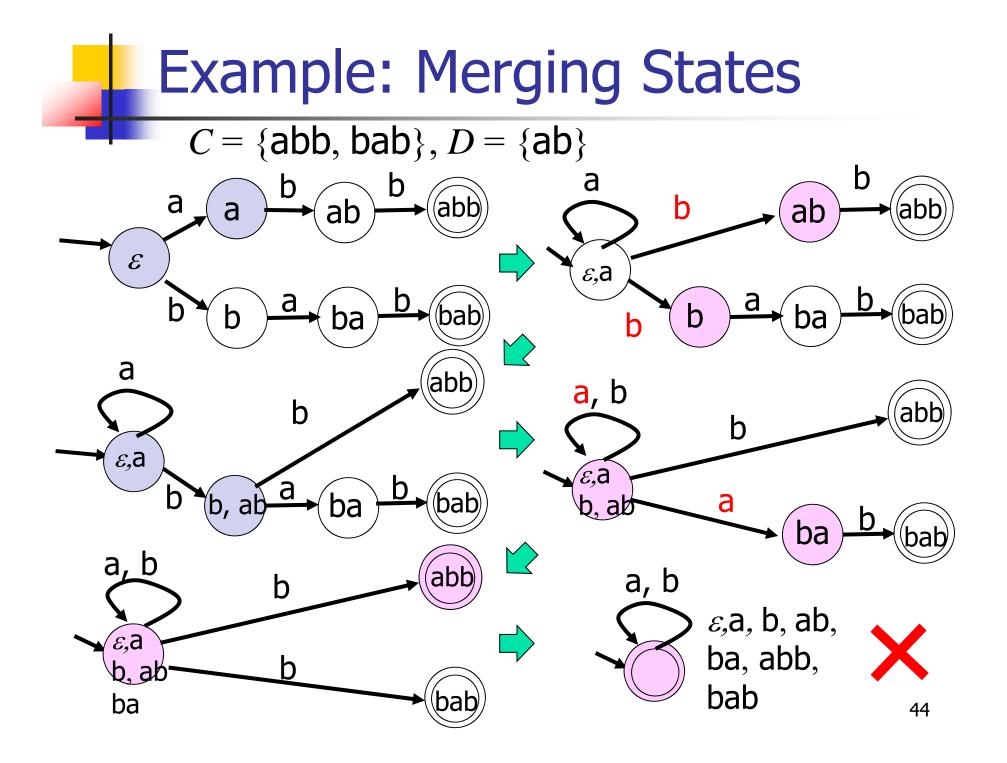
 $s_1 < s_2 < \ldots < s_n$

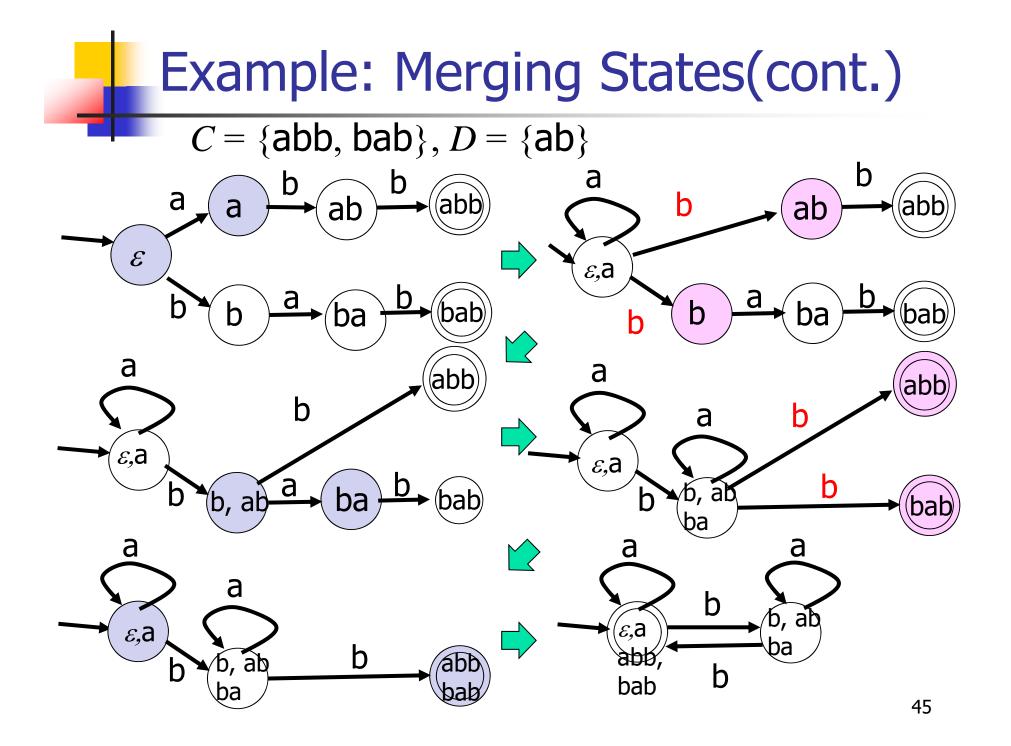
• We use the length-wise lexico-graphic order:

s < t if |s| < |t| or

|s| = |t| and s is earlier than t in the lexicographic order

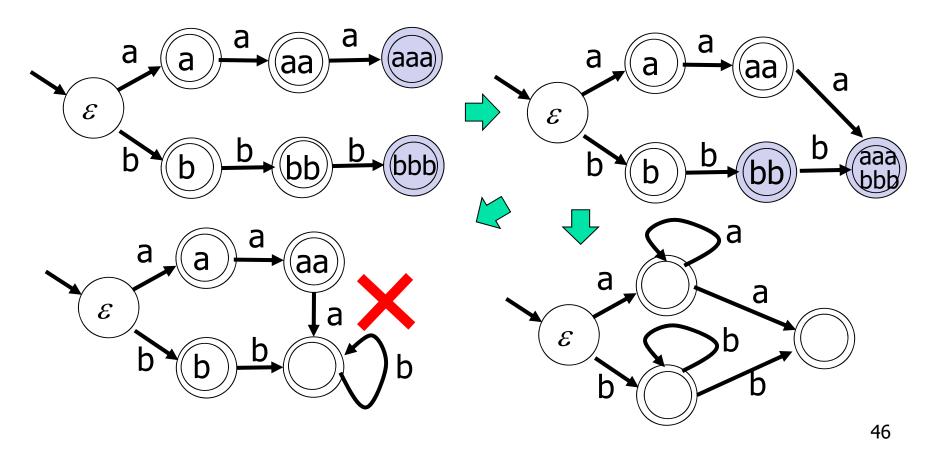
Example a < b < ab < ba < abb < bab



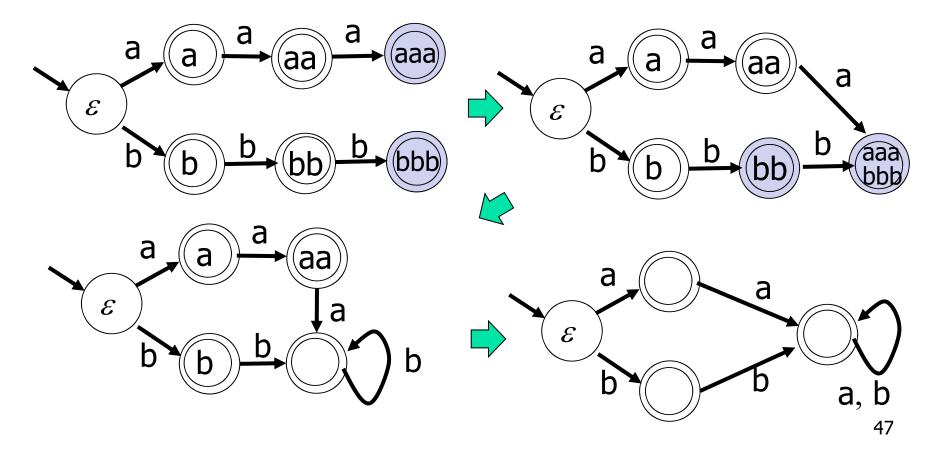


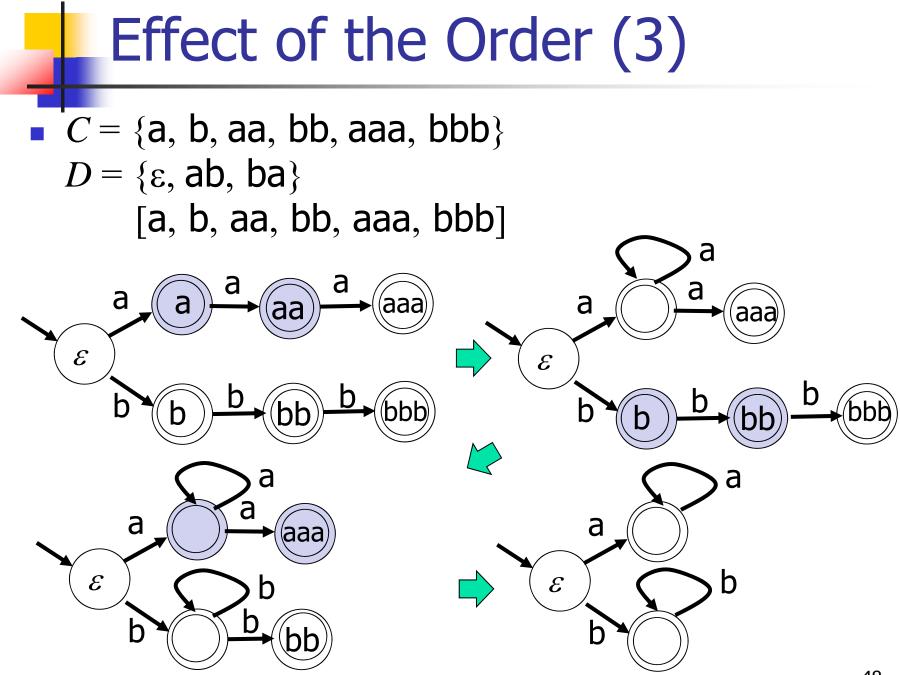
Effect of the Order (1)

• $C = \{a, b, aa, bb, aaa, bbb\}$ $D = \{\varepsilon, ab, ba, aab, aba, abb, baa, bab, bba\}$ [bbb, aaa, bb, aa, b, a]



Effect of the Order (2)





Effect of the Order (4)

It is proved that the length-wise lexico-graphic order is better than its inverse.

Finding minimum FA

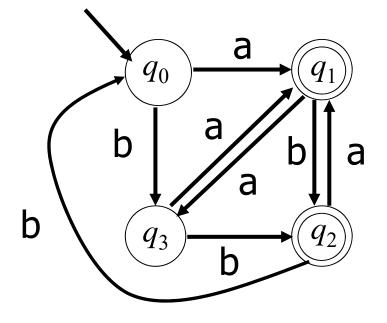
- Finding a minimum FA consistent with a finite amount of positive and negative examples is NP-hard.
- The automata found by RPNI is not always minimal, but outputs in polynomial time card(C)² card(D).

Data Sets Enough to Output Hidden Automata

Minimal Test Sets

• A set $S \subset \Sigma^*$ is a minimal test set for a FA *M* if for each state *q* of *M*, there exists exactly one string *x* such that $\delta(q_0, x) = q_i$.

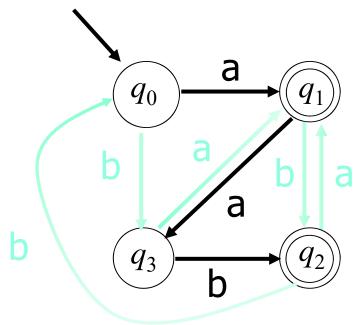
Example Examples of test sets of *M* are $S_1 = \{\varepsilon, a, aa, aab\}$ and $S_2 = \{\varepsilon, a, ab, b\}$.



Minimal Test Sets

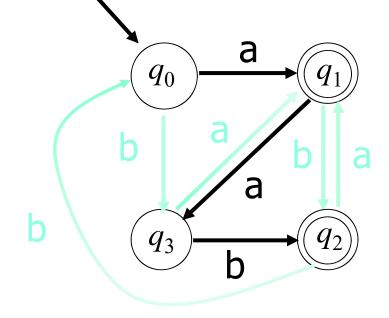
- Intuitively, a test set gives a "skelton" of the finite state automaton.
 - But the set is not sufficient to identify the FA.

Example Examples of test sets of *M* are $S_1 = \{\varepsilon, a, aa, aab\}$ and $S_2 = \{\varepsilon, a, ab, b\}$.



Prefix closed Test Sets

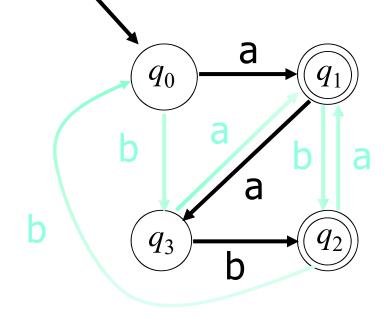
- A set of strings S is prefix closed (suffix closed) if and only if every prefix (resp. suffix) of every member of S is also a member of S.
- Intuitively, a prefix closed minimal test set gives a "skelton" of the finite state automaton.
 - But the set is not sufficient to identify the FA.



Example Both $S_1 = \{\varepsilon, a, aa, aab\}$ and $S_2 = \{\varepsilon, a, ab, b\}$ are prefix closed.

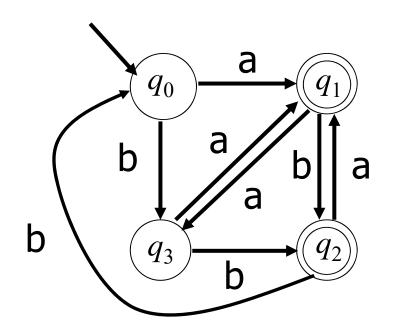
Prefix closed Test Sets

- A set of strings S is prefix closed (suffix closed) if and only if every prefix (resp. suffix) of every member of S is also a member of S.
- Intuitively, a prefix closed minimal test set gives a "skelton" of the finite state automaton.
 - But the set is not sufficient to identify the FA.



Example Both $S_1 = \{\varepsilon, a, aa, aa\}$ and $S_2 = \{\varepsilon, a, ab, b\}$ are prefix closed.

- We fix one ordering for listing elements of a set.
 - Example Following the lexicographic ordering, elements of S_1 = { ε , a, aa, aab} is listed as ε , a, aa, aab

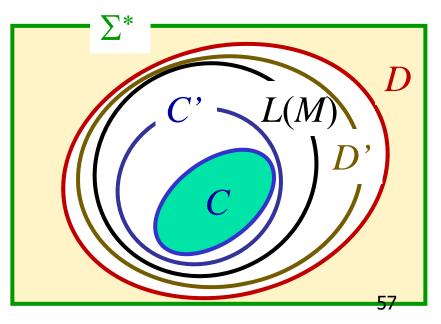


Characteristics Examples

- Assume an algorithm *A* which learns FA.
- Assume that we treat only minimal FA.
- A pair (C, D) of sets of examples is characteristic for a FA M if for any pair (C', D') of examples such that

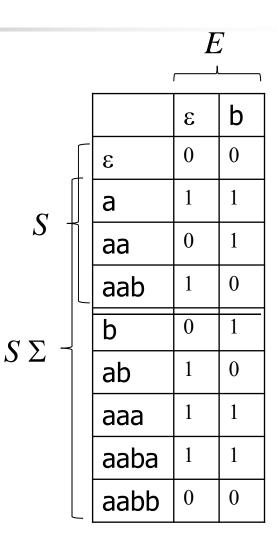
 $C \subset C' \subset L(M)$ and $D \subset D' \subset \overline{L(M)}$

the algorithm A returns M.



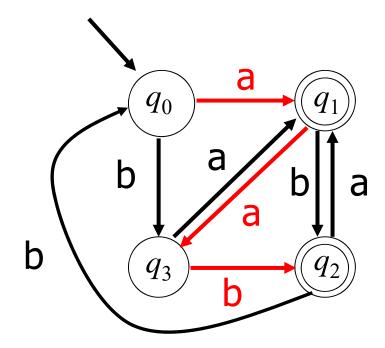
Observation table

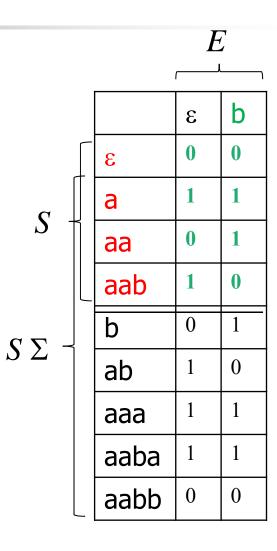
- An observation table (S, E, T): S: a prefix closed set $S \subset \Sigma^*$ E: a suffix closed set $E \subset \Sigma^*$ $T: (S \cup S \Sigma)E \rightarrow \{0, 1\}$
 - $S \Sigma = \{ sa \mid s \in S \text{ and } a \in \Sigma \}$
 - The element of the position (*s*, *w*) shows whether or not the automaton *M* accepts *sw*.



Observation table

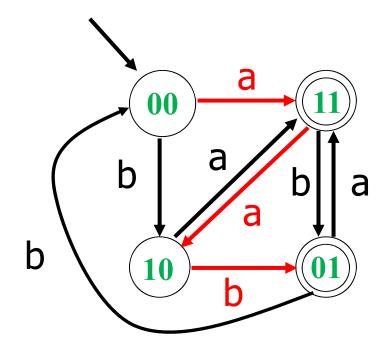
• An observation table (S, E, T): S: a prefix closed set $S \subset \Sigma^*$ E: a set $E \subset \Sigma^*$ $T: (S \cup S \Sigma)E \rightarrow \{0, 1\}$

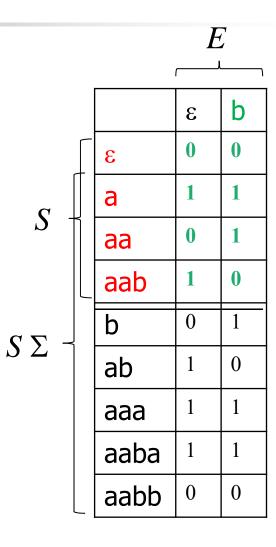




Observation table

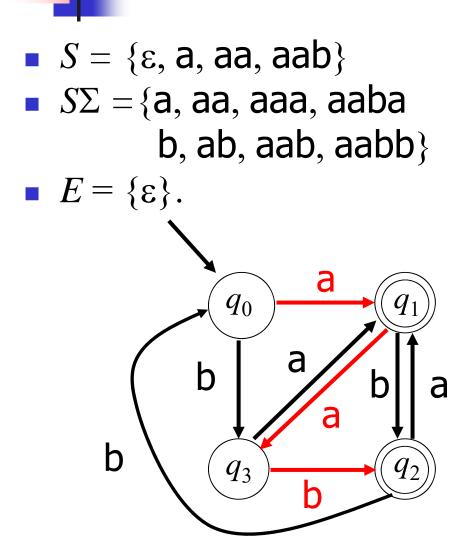
• An observation table (S, E, T): S: a prefix closed set $S \subset \Sigma^*$ E: a set $E \subset \Sigma^*$ $T: (S \cup S \Sigma)E \rightarrow \{0, 1\}$

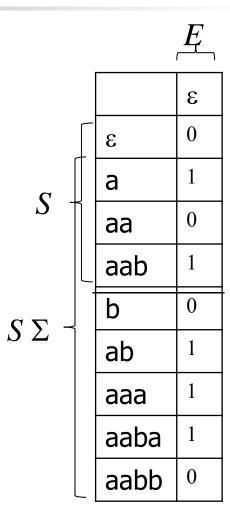




How to construct the table

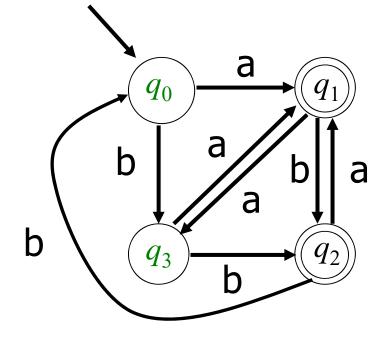
Input : a minimal FA A Output : The characteristic set of polynomial size S := the minimal test set of A, $E := \{ \epsilon \}, S' := S\Sigma - S$, Generate (S, E, T); while there exists $w, v \in S$ s.t. row(w) = row(v) but $T(wc, e) \neq T(vc, e)$ for some $c \in \Sigma$ and $e \in E$ $E := E \{ae\};$ Generate (S, E, T); end while $C = \{ we \mid w \in S \cup S\Sigma, e \in E, \text{ and } T(wc, e) = 1 \}$ $D = \{ we \mid w \in S \cup S\Sigma, e \in E, \text{ and } T(wc, e) = 0 \}$ return (C, D);

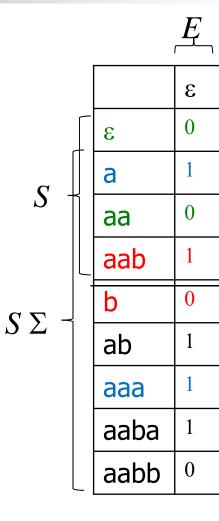




Because $T(\varepsilon, \varepsilon) = T(aa, \varepsilon)$, check whether or not $T(a, \varepsilon) = T(aaa, \varepsilon)$, and

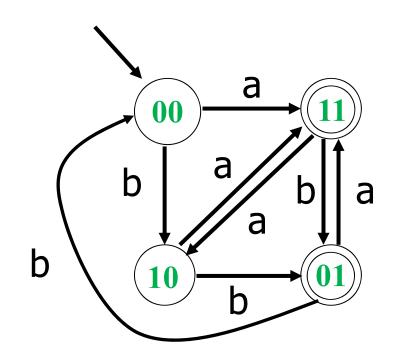
whether or not $T(b, \varepsilon) = T(aab, \varepsilon)$.

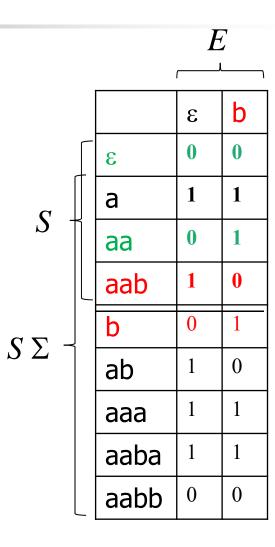




•
$$E := E \cup \{\mathbf{b}\}$$

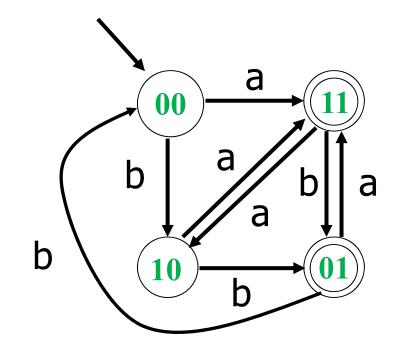
• Fill all of the new elements of the extended table.

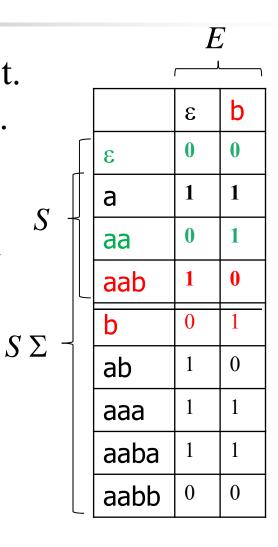




There is no w and v in the S part s.t. row(w) = row(v), end the loop.
C = {a, ab, bb, aaa, aab, aaab, aaba, aabab}

 $D = \{\varepsilon, b, aa, abb, aabb, aabb\}$





Consistent Table

- An observation table (S, E, T) is consistent if and only if for every pair $w, v \in S$ such that row(w) = row(v), row(wc) = row(vc) for any $c \in \Sigma$.
 - Intuitively, in a consistent table, every row in the *S* part can be regarded as one state of an automaton.

Proposition A consistent table *T* represents an automaton *M* such that, for $w \in S \cup S \Sigma$ and $e \in E$, *M* accepts *we* if and only if T(w, e) = 1.

Characteristic Examples

Theorem Suppose T be the table obtained above method from M. Then the pair (C, D) where

$$C = \{we \mid w \in S \cup S \Sigma \text{ and } e \in E \text{ and } T(w, e) = 1\}$$

$$D = \{we \mid w \in S \cup S \Sigma \text{ and } e \in E \text{ and } T(w, e) = 0\}$$

is characteristic w.r.t. the generate-and-test algorithm and *M*.

The Myhill-Nerode Theorem

Theorem The following three statements are equivalent: (1) The language *L* is accepted by some finite automaton. (2) *L* is the union of some equivalence classes of a right invariant equivalence relation of finite index. (3) Let equivalence relation R_L be defined by: $x R_L y$ if and only if for all $z \in \Sigma^* xz$ is in *L* iff yz is in *L*. Then R_L is finite index.

- An equivalence relation *R* is right invariant iff x R y implies xz R yz for all $z \in \Sigma^*$.
- The index of equivalence relation *R* is the number of equivalence classes.