
Computational Learning Theory
Learning Finite State Automata

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Learning Automata

2

Learning Problems
 Find an FA which accepts the strings in C and

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb

3

What is an Automaton?
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

Machines of this type are called finite state automata.

 A change of observed
squares left to right
only, together with a
possible change of
state of mind.

 No change of symbols
in the squares.

4

Distinguishing Strings with a FA
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

L() aababbaaabaabbabab

 The input string is
accepted by the
finite state
automaton iff the
transition ends at a
finial state.

 The set of all strings
accepted by the
automaton is a
formal language.

5

Table Representation(1)
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

 The automaton is
represented in the
form of a table.

F a b
q0 q1 q3

q1 q1 q2

q2 v q1 q2

q3 q3 q3

6

Table Representation(2)
 Mathematically, a finite state automaton is represented

in the form M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm

7

Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

L(M0) =  L(M0) = 

8

Equivalence of REs and FAs
Theorem [McNorton-Yamada]
 Every regular expression R can be transformed

into a finite state automaton so that L(R) = L(M).
 Every finite state automaton M can be transformed

into a regular expression R so that L(M) = L(R).

9

McNorton-Yamada’s Method(1)
 Step 1. Let Rij is the regular expression representing

the set of symbols which directly transits from qi to qj .
If a transition from qi to itself exists, add  to the set.

R00 = a + , R11 = + , R22 = b + ,
R01 = b, R02 = , R10 = b, R12 = a,
R20 = , R21 = a,

10

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(2)
 Step 0a. Let R0

ii is the regular expression representing
the set of strings which transits from qi to itself
directly or via q0.

R0
11 = R11+ R10(R00)* R01

= ( + (b +  (a + * (b + 
 + b a* b

11

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(3)
 Step 0b. Let R0

ij is the regular expression representing
the set of strings which transits from qi to qj

directly or via q0.

R0
12 = R12+ R10(R00)* R02

= a + (b +  (a + * 
a

12

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(4)
 Step 1. Let R1

ij is the regular expression representing
the set of strings which transits from qi to qj

directly, or via q0 or q1.

R1
02 = R0

02+ R0
01(R0

11)* R0
12 =

=  + (a* b ( + b a* b* (a
b + a* ba + + a* b (b a* b)* a

13

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(4)
 Step 2. Let R2

ij is the regular expression representing
the set of strings which transits from qi to qj

directly, or via q0 or q1 or q2.

R2
02 = R1

02+ R1
01(R1

11)* R1
12

14

q0 q2

b

a
a

q1
b

b

a

McNorton-Yamada’s Method(6)
 Step k. Let Rk

ij is the regular expression representing the
set of strings which transits from qi to qj

directly, or via q0 or q1 or … or qk.

R2
02 = R1

02+ R1
01(R1

11)* R1
12

15

q0 q2

b

a
a

q1
b

b

a

Formulation of Learning FA
 Formulation of Learning

argminMFA ( x Data Loss(M, x) +  P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with
a sign such that s = + if w C and s =  if w D,

0 if x = <w, + > and w L(M)
Loss(M, x) = or x = <w,  > and w  L(fM),

otherwise,
P(M) : the number of states in M

16

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton.
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn  L(k)) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk

 With which M’ should we replace ?

 Assume we have a method to generate a new
automaton.

17

Simple Strategy of Learning

 With referring the existence of minimum FA, we can
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small
to large according to their sizes.

18

Representation of Finite State Automata

 Mathematically, a finite state automaton is represented
in the form M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm

19

Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0  q0 q0

L(M0) =  L(M0) = 

20

Generation by Enumeration
 We can make an infinite but effective

enumeration of all automata, because
every automaton can be represented
as a transition table.

 This means that we can have an infinite
sequence of automata
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced
with M’ = Mi+1.

F a1 … an

q0

…

qm

21

Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

22

Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…

23

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let k = 0
forever

let k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’)) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk

Assume a procedure of enumerating all FA so that
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …

24

Some Properties of the Algorithm

 The algorithm always terminates because
for any pair of C and D (C D = 
there exists a finite state automaton M such that
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If the enumeration is made so that “smaller automata
appear earlier”, the algorithm returns the smallest
automaton M such that

L(M)  C and L(M) D = 

25

Note 1
 There might be several automata consistent with

given C and D.
 For any finite set C , we can easily construct

a finite state automaton which accepts only the
strings in C, and rejects all strings not contained
in C.
 The FA is called a prefix tree automaton.

26

Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b

27

Prefixes of a String
Definition A string u  is a prefix of another string s

There exists a string v such that s = uv.
For a set S , we let

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab,
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}.

28

Prefix Tree Automata
Definition A prefix tree automaton of a finite set S 
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where

QP(S) = { qs | s P(S) },
qs, c) = qsc if sP(S) and sc P(S),

QS = { qs | s S }

aqab qabaqaq
bas = aba

29

Note
 The automaton does not satisfy the mathematical

definition because, for example, no transition from q0 is
defined for the symbol b.
 This means that  is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special
state q (called a dead state) and letting every missing
value of  be q.

 Under assuming this recover, we
modify the definition.

q

a, b

30

Finite state automata (3)
 A finite state automata is defined as

M = (, Q, , q0, F)
where

Q is a set of states
 : Q×  Q is a partial transition function

represented as a transition table
q0  Q is an initial state
F  Q is a set of final state

31

Is the automaton pleasant?
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C.
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general

guesses from examples.
 The prefix automaton tree overgeneralize the set D of negative

examples.

32

Note 2
 There is a minimum one in the sense that the number of

states in it is minimum.
 Unfortunately it is proved that the problem of finding a

minimum automaton consistent with given C and D is
NP-hard.
 The activity of a learning algorithm should not be evaluated

(justified) only on the viewpoint of optimization.
 Even though it were not ensured that the algorithm returns the

best solution, the algorithm could work as “learning”.

33

Generalization by Merging
States

34

Generalization by Merging States
 The prefix tree T can be transformed into a more

general automaton by merging several states into
one states.

35

Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b

36

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a

37

Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general
automaton, and
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the
second merge as far as possible.

c

c

38

Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is
a collection ={B1, B2,…, Bn} of subsets of Q satisfying
1. every Bi is not empty,
2. Bi  Bj =  for every pair of i and j such that i  j,
3. B1  B2  Bn = .

Every Bi is called a bock of  .
 A block B = {q1, q2,…, qm } represents a state obtained

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.
To merge two blocks Bi and Bj means to revise to
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.

39

Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, ,
q0, F) is consistent

for every block Bi , every pair p, q  Bi and
every symbol c 
if both (p, c) and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c)  Bj .

c

cp

q

Bi Bj

40

Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is
consistent we can define a partial function

’ : ×  
and also an automaton M’ = (, , ’, B0, F’) with

F’ = {Bi | some q Bi is in F }.
The automaton is denoted M/ .

41

RPNI Algorithm[Oncina and Gracia92]
Regular Positive Negative Inference (PRNI) Algorithm
Inputs : C   : a finite set of positive examples

D   : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s  P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi  Bi and qsj Bj such that Bi  Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 42

How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn]

of P(C).
 We had better use some order < and make the list so

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b < ab < ba < abb < bab

43

Example: Merging States
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab,
ba, abb,
bab 44

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a

45

Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

bbb b
a

a a



a

b
b b

a

a

46

Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

a, b
bb b

a
a a



a

b b

a

b

47

Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]


aaa

bbb b bb

a
aaa

bbb

a a



a

b
bb b bb

a



a

b b

a



a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b

48

Effect of the Order (4)
 It is proved that the length-wise lexico-graphic

order is better than its inverse.

49

Finding minimum FA
 Finding a minimum FA consistent with a finite

amount of positive and negative examples is
NP-hard.

 The automata found by RPNI is not always
minimal, but outputs in polynomial time

card(C)2 card(D).

50

Data Sets Enough to Output
Hidden Automata

51

Minimal Test Sets

 A set S   is a minimal test set for a FA M if for each
state q of M, there exists exactly one string x such that
(q0, x) = qi.

q0

q2q3

b a

a

b

q1

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab}
and S2 = {, a, ab, b}.

a

b

52

Minimal Test Sets
 Intuitively, a test set gives a “skelton” of the finite state

automaton.
 But the set is not sufficient to identify the FA.

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab}
and S2 = {, a, ab, b}.

53

Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA.

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Both S1 = {, a, aa,
aab} and S2 = {, a, ab, b} are
prefix closed.

54

Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA.

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Both S1 = {, a, aa,
aab} and S2 = {, a, ab, b} are
prefix closed.

55

Fixing an Order

 We fix one ordering for listing elements of a set.

 Example Following the lexicographic ordering, elements of S1
= {, a, aa, aab} is listed as , a, aa, aab

q0

q2q3

b a

a

b

q1

a

b

a

b

56

 Assume an algorithm A which learns FA.
 Assume that we treat only minimal FA.
 A pair (C, D) of sets of examples is characteristic for a

FA M if for any pair (C’, D’) of examples such that
C C’  L(M) and D D’ L(M)

the algorithm A returns M.

Characteristics Examples



L(M)

C

C’
D

D’

57

Observation table
 An observation table (S, E, T) :

S : a prefix closed set S  *
E : a suffix closed set E  *
T : (S  S {0, 1}
 S  { sa | s  S and a   }
 The element of the position (s, w)

shows whether or not the
automaton M accepts sw.

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 

58

Observation table
 An observation table (S, E, T) :

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

59

Observation table
 An observation table (S, E, T) :

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110

60

How to construct the table
Input : a minimal FA A
Output : The characteristic set of polynomial size

S : = the minimal test set of A, E := {  }, S’ := S S,
Generate (S, E, T);
while there exists w, v  S s.t. row(w) = row(v) but

T(wc, e) T(vc, e) for some c  and e  E
E : = E {ae};
Generate (S, E, T);

end while
C = { we | w  S S, e  Eand T(wc, e) 
D = { we | w  S S, e  Eand T(wc, e) 
return (C, D);

61

Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

 S = {, a, aa, aab}
 S ={a, aa, aaa, aaba

b, ab, aab, aabb}
 E = {}.

62

Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

Because T() = T(aa), check
whether or not T(a) = T(aaa),
and
whether or not T(b) = T(aab).

63

Example
 E := E  {b}
 Fill all of the new elements of

the extended table.
 b

 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110

64

Example
 There is no w and v in the S part s.t.

row(w) = row(v), end the loop.
 C = {a, ab, bb, aaa, aab, aaab,

aaba, aabab}
D = {, b, aa, abb, aabb, aabbb}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
11

b a

a

b
a

b

a

b

00

0110
65

Consistent Table
 An observation table (S, E, T) is consistent if and only if

for every pair w, v S such that row(w) = row(v),
row(wc) = row(vc) for any c .

 Intuitively, in a consistent table, every row in the S part can be
regarded as one state of an automaton.

Proposition A consistent table T represents an automaton M
such that, for w S  S  and e  accepts we if and
only if T(w, e) 

66

Characteristic Examples

Theorem Suppose T be the table obtained above method
from M. Then the pair (C, D) where

C ={we | w S  S  and e and T(w, e) = 1}
D ={we | w S  S  and e and T(w, e) = 0}

is characteristic w.r.t. the generate-and-test algorithm and
M.

67

The Myhill-Nerode Theorem

Theorem The following three statements are equivalent:
(1) The language L is accepted by some finite automaton.
(2) L is the union of some equivalence classes of a right
invariant equivalence relation of finite index.
(3) Let equivalence relation RL be defined by: x RL y if and
only if for all z xz is in L iff yz is in L. Then RL is
finite index.

 An equivalence relation R is right invariant iff x R y
implies xz R yz for all z

 The index of equivalence relation R is the number of
equivalence classes.

68

