Computational Learning Theory

,'- Learning Finite State Automata

Akihiro Yamamoto LUK E &

http://www 1ip.ist.1.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

Learning Automata

i Learning Problems

= Find an FA which accepts the strings in C and
rejects the strings in D.

C = {ab, aab, abaab, aaab, aaaabbbb,abab}
D = {a, b, bbbb, abba, baaaaba, babb}

i What is an Automaton?

al/bla|/blala]a

b

=

d

Machines of this type are cal

A change of observed
squares left to right
only, together with a
possible change of
state of mind.

No change of symbols
in the squares.

led finite state automq}ta.

’L Distinguishing Strings with a FA

bla|/blalalalb

=
Nt e)s
b¢ a||b

:
Oa,b '

L(M) = {aab, abb,aaab, aabb,abab, ,... }

The input string 1s
accepted by the
finite state
automaton 1ff the
transition ends at a
finial state.

The set of all strings
accepted by the
automaton 1s a
formal language.

i Table Representation(1)

alb|a

b |a

d

d

b

=

d
A3

b a

(> ab

w0
S

d

b

s The automaton is
represented in the

form of a tabl

Flal|b

Jo 0;10;

d; d; | 0

O | V0|0,

0, 0510

C.

i Table Representation(2)

= Mathematically, a finite state automaton 1s represented

in the form M=(%, S, 9, s, F)
where
2. 1s the alphabet,
S 1s a set of states,
0 : SX X — Sis a transition function
represented as a transition table,
g, € S 1s an 1nitial state,

F — S is a set of final states.

Jo

Um

i Finite Automata of One State
M

0 Ml
a,b alb
Fla|b Elalb
%o Yo | Yo Qo | V | Go | Yo

L(My) = © L(My) = 2°

i Equivalence of REs and FAs

Theorem [McNorton-Yamada]

» Every regular expression R can be transformed
into a finite state automaton so that L(R) = L(M).

= Every finite state automaton M can be transformed
into a regular expression R so that L(M) = L(R).

i McNorton-Yamada’'s Method(1)

= Step —1. Let R;; 1s the regular expression representing
the set of symbols which directly transits from g;to g;.
If a transition from Q; to itself exists, add ¢ to the set.

§ a PC O
NELW 5

Rp=a+¢ R;=0+e=¢,Ry,,=b +e¢,
Ro1=b, R;,=9,R,,=b, R, =a,
Ry =9, Ry =a,

10

i McNorton-Yamada’'s Method(2)

= Step Oa. Let RY; is the regular expression representing
the set of strings which transits from q; to itself

directly or via q,.

2 (>
d

\ o I:) @ . 4

R011 =R+ Rg(Roo)™ Ry

=)+ (b+e)@+e)* (b+e)
=¢+ba*hb

11

i McNorton-Yamada’'s Method(3)

= Step Ob. Let RY; is the regular expression representing
the set of strings which transits from ¢ to q;

directly or via (,.

2 (>
d

\ o I:) @ . 4

ROIZ = Ryt Rg(Rgo)™ Ry

=at(b+e)@+e)*d
=a

12

i McNorton-Yamada’s Method(4)

= Step 1. Let RY;; is the regular expression representing
the set of strings which transits from ¢ to g

directly, or via g, or Q.

2 (>
b d

\ Jo = @ - 4
Rloz — R002+ R001(R011)* R, =

=+ @* b) (¢ +b a* b)* (@a)
=b+a*ba+c+a*b((ba*b)*a

13

i McNorton-Yamada’s Method(4)

= Step 2. Let R%; is the regular expression representing
the set of strings which transits from ¢ to g

directly, or via (, or g, or d,.

° a PC O
NELW 5

R202 — Rloz"' R101(R111)* Rllz

14

i McNorton-Yamada’'s Method(6)

= Step k. Let Rkij 1s the regular expression representing the
set of strings which transits from g;to g

directly, or via g,or g, or ... or Q,.

§ a PC O
NELW 5

R202 — Rloz"' R101(R111)* Rllz

15

L Formulation of Learning FA

s Formulation of Learning

argminyy (2

where FA : the set

Loss(M, xX) + A P(M))

X eData

of all finite state automata,

Data : a finite set of pairs X = <w, s> of a string with
asignsuchthats=+1fwe Cands= - 1fw e D,

Loss(M, X) =

0 1f X=<w,+>andw e L(M)
or X =<w, —>and w ¢ L(fM),

_ o0, otherwise,

P(M) : the number of states in M

16

i A Simple Generate-and-Test Algorithm

= Assume we have a method to generate a new
automaton.

Let the input data X, X,, ..., Xy
Initialize M as some automaton.
fork=1,2,.

M, = Mk 1

forn=1,2,.... N,

if (X, CandXx, ¢ L(M,))or (X, D and X, € L(M,))
replace M, with another M
ifM, =M, _,

terminate and output M,

= With which M’ should we replace M ?

17

i Simple Strategy of Learning

= With referring the existence of minimum FA, we can
casily imagine a sitmple strategy of learning:

Generate all FA, and enumerate them from small

to large according to their sizes.

18

]L Representation of Finite State Automata

= Mathematically, a finite state automaton 1s represented

in the form M=(%, S, 9, s, F)
where
2. 1s the alphabet,
S 1s a set of states,
0 : SX X — Sis a transition function
represented as a transition table,
g, € S 1s an 1nitial state,

F — S is a set of final states.

Jo

Um

19

i Finite Automata of One State
M

0 Ml
a,b alb
Fla|b Elalb
Y% Y | Y Jo v Qo | Yo

L(My) = © L(My) = 2°

i Generation by Enumeration

= We can make an infinite but effective
enumeration of all automata, because

every automaton can be represented

as a transition table. - a, N
= This means that we can have an infinite
sequence of automata Yo
M, M, ...
any automaton M appears as M, = M. o/

= In the algorithm M = M, is just replaced
with M” = M, ,.

21

i Enumeration of Automata(1)

M, M,
N\
a,b a,b
Fla|b e|la|b

%o Yo | Yo Qo | V | Go | Yo

i Enumeration of Automata(2)

a, b
Flal|b Fla|b
o Qo | O o Go | Oy
i V10| G| VI |
Fla|b Fla|b
Qo | V [Qo | Oy Qo | V [Do | Uy
A di | Qo of d: | Oy

23

i A Simple Generate-and-Test Algorithm

Assume a procedure of enumerating all FA so that
the enumeration M,, M,, M,, ..., M, , ... satisfies

P(M,) < P(M,) < P(M,) < ... <P(M) < ...

Let the input data X, X,, ..., Xy

Initialize M = M,, as an automaton consisting of one state
let k=0

forever
let K’ =k
forn=1,2,.... N,

if (X, CandX, ¢ L(M,.))or (X, Dandx, e L(M,.))
replace K with kK + 1
if k> =Kk

terminate and output M, 24

i Some Properties of the Algorithm

= The algorithm always terminates because
for any pair of C and D (C n D = &),
there exists a finite state automaton M such that
L(M)=Cand L(M) "D =, and this M
appears in the enumeration as M; = M.

m If the enumeration 1s made so that “smaller automata
appear earlier”, the algorithm returns the smallest
automaton M such that

L(M) = C and L(M) ~ D = &.

25

i Note 1

= There might be several automata consistent with
given C and D.

= For any finite set C < X*, we can easily construct
a finite state automaton which accepts only the
strings 1n C, and rejects all strings not contained
in C.

= The FA is called a prefix tree automaton.

26

A
UQJ
o
O
O
O
=
Q)
o
O
UQJ
O
Q)
Q)
Q)
Q)
o
UQJ
O
Q)
o
O
\—~’

BYSON
S
N S

27

L Prefixes of a String

Definition A string U €X* 1s a prefix of another string seX*
<> There exists a string V € 2*such that S = uv.

For aset S c 2*, we let
P(S)={ueX*|uisaprefixof someSinS }.

Example The prefixes of aab are ¢, a, aa, and aab,

the prefixes of @b are ¢, a, and ab, and so we have
P({ab, aab}) = {¢, a, aa, ab, aab}.

28

i Prefix Tree Automata

Definition A prefix tree automaton of a finite set S — X~
is defined as

M= (%, Q:Qp(s) ,0,0,=0,, F=Q5)

where

Qps)= 10515 € PO},
o, C)= Q. 1fse P(S)andsc € P(S),
Qs=10slsesS}

29

L Note

The automaton does not satisty the mathematical
definition because, for example, no transition from ¢, 1s
defined for the symbol b.

= This means that o i1s not a mathematical function, but a partial
function.

= This fault can be easily recovered by adding a special
state 0., (called a dead state) and letting every missing
value of 0 be q,,.

= Under assuming this recover, we
modify the definition. a,b

30

’L Finite state automata (3)

= A finite state automata 1s defined as
M=(Z,Q,8, dp F)
where
Q 1s a set of states
0: QX X — Q 1s apartial transition function
represented as a transition table
J, € Q 1s an initial state

F < Q 1s a set of final state

31

Is the automaton pleasant?

» The prefix tree automaton T overfits C.
= [t accepts no strings which is not in C.

= It must be revised if new examples are added to C.

= It is a natural to assume that positive examples and negative are added
more experiments or observations are made.

s The prefix tree automaton T does not generalize C.

= Intuitively learning should be activity of making general
guesses from examples.

= The prefix automaton tree overgeneralize the set D of negative
examples.

32

i Note 2

s There 1s a minimum one 1n the sense that the number of
states 1n 1t 1S minimum.

= Unfortunately it 1s proved that the problem of finding a
minimum automaton consistent with given C and D 1s
NP-hard.

= The activity of a learning algorithm should not be evaluated
(justified) only on the viewpoint of optimization.

= Even though it were not ensured that the algorithm returns the
best solution, the algorithm could work as “learning”.

33

+

Generalization by Merging
States

34

i Generalization by Merging States

m The prefix tree T can be transformed 1nto a more
general automaton by merging several states into
one states.

35

Example: Merging States
C = {abb, bab}, D = {ab}

-

b b a b
_,a o ©¢> b/Q—*@
OO0 O RO
’ a, b]
‘ =

- ,

Example: Merging States(cont.)
= {abb, bab}, D = {ab}

*Q/%@
%/
%b»@ |

i Two Types of Merge

= We have to treat two types of merge:

1. Merging two states to generate a more general
automaton, and

2. Merging two states to keep the automaton deterministic

(in other words, consistent).
S

O A0,

» Strategy: first apply the first merge, and then try the
second merge as far as possible.

38

i Partitions and Blocks

Definition A partition of a set Q of states of a automaton, 1s
a collection 1 ={B,, B,,..., B,,} of subsets of Q satisfying

1. every B; 1s not empty,
2. B; n B; = for every pair of I and J such that 1 # |,
3.BuB,u...uUB, =0.

Every B; is called a bock of rt .

= AblockB=1{q,,0,...,q, } represents a state obtained
by merging the states q,, 0,,..., ., Into one.

Definition Let 1 ={B,, B,,..., B} be a partition of states.

To merge two blocks B; and B; means to revise = to
Tij=1B1, Bys..o, Boy—1B;, By }U{B; UB;}.

39

i Consistent Partition

Definition A partition n ={B, B,,..., B} for M =(Z, Q, o,
0y, F) 1s consistent

N

for every block B, , every pair p, q € B;and
every symbol C € 2,

if both o(p, ¢) and o(q, C) are defined, then
there 1s a block B; such that both o(p, €) and 6(q, C) € B;.

{O\CIS
|

\ J ———

40

’L Partitioned Automata

If a partition ©t ={B,, B,,..., B} for M = (2, Q, 0, q,, F) 1s
consistent we can define a partial function

O M XXM

and also an automaton M’ = (X, &, 0°, B, F’) with
F>={B,| someq € B, isin F }.

The automaton 1s denoted M/= .

41

RPNI Algorithm[Oncina and Gracia92]

Regular Positive Negative Inference (PRNI) Algorithm
Inputs : C — 2* : a finite set of positive examples
D < 2* : a finite set of negative examples
Method : Make a list [S,, S,,...,S,| of elements in P(C)
Make the prefix automaton M of C; k= 0; n,={{q.}|s € P(C)}
fori=2ton
forj=1to1-1
if g ; € B;and g € B;such that B; = B;
let ©° be the partition obtained by merging B; and B;
while 7’ 1s not consistent
Choose a pair 9’ B’ and ”eB” violating the consistency
n’:= the partition obtained by merging B’ and B’ in 7’
if M/’ rejects all strings in D
T =n ; Ki=k+1
Output M/m,

42

’L How to make the list of examples

= We have to fix a method of making the list [S;, S,,...,S,]
of P(C).

s We had better use some order < and make the list so
that

S, <S,<...<S,
= We use the length-wise lexico-graphic order:
s<tif|s|<|t|or
| S| =|t]|and s is earlier than t in the lexico-
graphic order

Example a <b < ab < ba < abb < bab

43

Example: Merging States
C = {abb, bab}, D = {ab}

ai> b/
Db 2xbayr) b b
3 h a, b)
*i é; .
b (ba 26 ab o)
E> gaa;)ab
Sase x

) ® @

Example: Merging States(cont.)
= {abb, bab}, D = {ab}

"@/‘ /'b

RN
o

Effect of the Order (1)

= {a, b, aa, bb, aaa, bbb}
D = {g, ab, ba, aab, aba, abb, baa, bab, bba}
(bbb, aaa, bb, aa, b, a]

\‘M (6a) e
Sormee

Effect of the Order (2)

C={a, b, aa, bb, aaa, bbb}
D = {¢, ab, ba}
[bbb, aaa, bb, aa, b, a]

\.M o8
@@ >¢

<l
poey ‘\oo

Effect of the Order (3)

= C={a, b, aa, bb, aaa, bbb}
D = {¢, ab, ba}
[a, b, aa, bb, aaa, bbb]

aaa[>\G>a/'a
e T
a a

Yo = Yol

> =

b

48

i Effect of the Order (4)

» [t 1s proved that the length-wise lexico-graphic
order 1s better than its inverse.

49

i Finding minimum FA

s Finding a mimmimum FA consistent with a finite

amount of positive and negative examples 1s
NP-hard.

= The automata found by RPNI 1s not always
minimal, but outputs in polynomial time

card(C)? card(D).

50

Data Sets Enough to Output

!'_ Hidden Automata

51

i Minimal Test Sets

s A setSc X*i1s aminimal test set for a FA M 1f for each
state g of M, there exists exactly one string X such that

B(qu X) — qi’

Example Examples of test sets of M are S, = {¢, a, aa, aab}
and S, = {g, a, ab, b}.

52

i Minimal Test Sets

s Intuitively, a test set gives a “skelton” of the finite state
automaton.

= But the set is not sufficient to identify the FA.

Example Examples of test sets of M are S, = {¢, a, aa, aab}
and S, = {g, a, ab, b}.

\

d

53

i Prefix closed Test Sets

= A set of strings S 1s prefix closed (suffix closed) i1f and
only if every prefix (resp. suffix) of every member of S
1s also a member of S.

= Intuitively, a prefix closed minimal test set gives a

“skelton” of the finite state automaton.
= But the set 1s not sufficient to identify the FA.

N\
Example BothS, = {g, a, aa,

aab} and S, = {g, a, ab, b} are

prefix closed.
d

54

i Prefix closed Test Sets

= A set of strings S 1s prefix closed (suffix closed) i1f and
only if every prefix (resp. suffix) of every member of S
1s also a member of S.

= Intuitively, a prefix closed minimal test set gives a

“skelton” of the finite state automaton.
= But the set 1s not sufficient to identify the FA.

\ Example Both S, = {g, a, aa,

aab} and S, = {g, a, ab, b} are

prefix closed.
d

55

i Fixing an Order

= We fix one ordering for listing elements of a set.

= Example Following the lexicographic ordering, elements of S,
= {g, @, aa, aab} is listed as ¢, a, aa, aab

56

i Characteristics Examples

= Assume an algorithm A which learns FA.

= Assume that we treat only minimal FA.

s A pair (C, D) of sets of examples is characteristic for a
FA M 1f for any pair (C’, D) of examples such that

CcC cL(M)and D = D’ = L(M)

Z*

the algorithm A returns M.

i Observation table

= An observation table (S, E, T) :
S : a prefix closed set S < 2*
E : a suffix closed set E < 2*
T:SUS2)E— {0,1}
s SX={sa|seSandae X}

= The element of the position (S, W)
shows whether or not the
automaton M accepts Sw.

S-<

S

r_k_\

e |b
e 0 |0
a 1 |1
aa 0 |1
aab |1 |0
b 0 |1
ab 1 |o
aaa |1 |1
aaba |1 |1
aabb [0 |0

58

i Observation table

= An observation table (S, E, T) :
S : a prefix closed set S < 2*
E:asetEcX*
T:SUS2)E— {0,1}

S-<

S

r_k_\

e | b
e 0 |0
3 1 |1
aa 0 |1
aab |1 |0
b 0 |1
ab 1 |o
aaa |1 |1
aaba |1 |1
aabb [0 |0

59

i Observation table

= An observation table (S, E, T) :
S : a prefix closed set S < 2*
E:asetEcX*
T:SUS2)E— {0,1}

S-<

S

r_k_\

e | b
e 0 |0
3 1 |1
aa 0 |1
aab |1 |0
b 0 |1
ab 1 |o
aaa |1 |1
aaba |1 |1
aabb [0 |0

60

i How to construct the table

Input : a minimal FA A
Output : The characteristic set of polynomial size
S : = the minimal test set of A, E:={¢},S =3SX -,
Generate (S, E, T);
while there exists W, v € S s.t. row(wW) = row(V) but
T(wc,e)=T(vc,e)forsomeCc e Z2ande € E

E:=E {ae};
Generate (S, E, T);
end while

C={we|weSuSX,eeckE, and T(wc,e)=1}
D={we| weSuSdX,eekE and T(wc,e)=0}
return (C, D);

61

i Example

= S={¢g, a, aa, aab}
= S¥ ={a, aa, aaa, aaba
b, ab, aab, aabb}

s E={¢g}. S T

S

dd

aab

ab

dad

aaba

aabb

i Example

Because T(g, €) = T(aa, €), check
whether or not T(Q, €) = T(aaa, ¢),
and

whether or not T(b, €) = T(aab, ¢).

S-<

S

dd

aab

ab

dad

aaba

aabb

63

i Example

s E=EuU {b}
s Fill all of the new elements of
the extended table.

S

r_k_\

e |b
e 0 |0
3 1 |1
aa 0 |1
aab |1 |0
b 0 |1
ab 1 |o
aaa |1 |1
aaba |1 |1
aabb [0 |0

i Example

s There is no w and Vv 1n the S part s.t.
row(w) = row(V), end the loop.

= C= {a, ab, bb, aaa, aab, aaab,
aaba, aabab}
D = {¢, b, aa, abb, aabb, aabbb}

S-<

S

r—‘—\

e |b
e 0 |0
3 1 |1
aa 0 |1
aab |1 |0
b 0 |1
ab 1 |o
aaa |1 |1
aaba |1 |1
aabb [0 |0

Consistent Table

= An observation table (S, E, T) 1s consistent 1f and only 1f
for every pair W, Ve S such that row(w) = row(V),

row(wc) = row(VvC) for any Ce 2.
= Intuitively, in a consistent table, every row in the S part can be
regarded as one state of an automaton.

A consistent table T represents an automaton M

such that, forw € SU S X and e € £, Maccepts we 1f and
only if T(w, e) =1.

66

i Characteristic Examples

Suppose T be the table obtained above method
from M. Then the pair (C, D) where

C={we|weSuSXande € Fand T(w, e)=1}
D={we|weSuSXande € Fand T(w, e) =0}

1s characteristic w.r.t. the generate-and-test algorithm and
M.

67

i The Myhill-Nerode Theorem

The following three statements are equivalent:
(1) The language L 1s accepted by some finite automaton.
(2) L 1s the union of some equivalence classes of a right
invariant equivalence relation of finite index.
(3) Let equivalence relation R, be defined by: X R, y if and
only if for all zeX* xzi1sin L iff yzisin L. Then R 1s
finite index.

= An equivalence relation R is right invariant iff X Ry
implies Xz R yz for all zeX*.

= The index of equivalence relation R is the number of
equivalence classes.

68

