Computational Learning Theory Linear Patterns and Dynamic Programming

Akihiro Yamamoto 山本 章博

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/ akihiro@i.kyoto-u.ac.jp Patterns(Monomials) and Machine Leaning

Alphabets and Stings

- Σ : a finite set of symbols and called an alphabet
- Σ* : the set of all finite strings (sequences) consisting of the symbols in Σ.
 - An empty string is denoted by ε.
 - $\Sigma^+ = \Sigma^* \{\varepsilon\}$
 - The size of a string w, denoted by | w |, is the total number of symbols occurring in w.

Examples

Question

• Assume that we have provided

- $C \subset \Sigma^*$: a finite set of positive examples, and $D \subset \Sigma^*$: a finite set of negative examples such that $C \cap D = \emptyset$.
- Develop a computer program to find a rule which accepts all positive examples and rejects all negative examples.

The First and Second Problem

- What are rules?
- From where do the rules come?
 - How can we generate the rules mechanically?

Examples

Example 1

- $C_1 = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$
- $D_1 = \{a, b, bbbb, abba, baaaaba, babb\}$
 - It could hold that every string in C₁ starts with a and end with b.

Example 2

- $C_2 = \{$ ba, bababa, babababa, bababababa $\}$
- $D_2 = \{a, b, bbbb, abb, baaaaba, babbb\}$
 - It might hold that every string in C₂ is made of some repetition of ba.

Example 1

- $C_1 = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$
- $D_1 = \{a, b, bbbb, abba, baaaaba, babb\}$
- The rule which is output by a learning machine would represent a set
- $L_1 = \{ab, aab, abb, aaab, aabb, abab, abbb, aaaab, aaaab, aaabb, ..., abaab, ..., abbbb, ..., abbbbb, ..., aaaabbbbb, ...\}$

Patterns (Monomials)

- Let *X* be a countable set of variables
 - Assuming $\Sigma \cap X = \emptyset$
- A pattern π is an element of $(\Sigma \cup X)^*$
 - That is, a pattern is a string consisting of symbols and variables.

Example

 $\Sigma = \{a, b\}, X = \{x, y, ...\}$

axb, axbbya, aaxbybxa,...

• We sometime assume that every variable in a pattern is indexed, in the ordering of its first occurrence.

$$\Sigma = \{a, b\}, X = \{x_1, x_2, x_3, ...\}$$

a x_1 b, a x_1 bb x_2 a, aa x_1 b x_2 b x_1 a,...

Substitution (1)

• A substitution is a set of pairs

 $\theta = \{ (x_1, \tau_1), (x_2, \tau_2), ..., (x_n, \tau_n) \}$ where $x_1, x_2, ..., x_n$ are distinct variables and

 $\pi_1, \pi_2, \ldots, \pi_n$ are patterns.

• Applying a substitution θ to a pattern π is replacing every variable x_i in π with τ_i simultaneously.

The result is denoted by $\pi\theta$.

Example

 $\begin{aligned} \theta_1 &= \{ (x, bba), (y, ba) \} \\ \theta_2 &= \{ (x, bya), (y, ayb) \} \\ bxaxb\theta_1 &= bbbaabbab, bxaxb\theta_2 &= bbyaabyab, \\ axbbya\theta_1 &= abbabbbaa, axbbya\theta_2 &= abyabbayba \end{aligned}$

Substitution (2)

- A substitution $\theta = \{ (x_1, \tau_1), (x_2, \tau_2), \dots, (x_n, \tau_n) \}$ is nonempty if all of $\tau_1, \tau_2, \dots, \tau_n$ are in $(\Sigma \cup X)^+$.
- A substitution θ grounds a pattern π if $\pi \theta \in \Sigma^*$. Such θ is called a grounding substitution for π .
- A substitution $\theta = \{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \}$ is variable renaming if y_1, y_2, \dots, y_n are distinct variables.
 - We regard two patterns equivalent when each one is obtained from the other by renaming variables.

Examples

- Two patterns axb and ayb are equivalent, and they are also equivalent to ax_1b .
- Two patterns aaxbxybxa and aaybxbya are equivalent, and they are also equivalent to aazbwbza and $aax_1bx_2bx_1a$.

Defining languages with patterns

A language defined with a pattern π is
 {σ | σ=πθ for some non-empty grounding substitution θ }
 The language is denoted by L(π).
 Example
 L(axb) = {aab, abb, aaab, aabb, abab, abbb,... }

 $L(ayb) = \{aab, abb, aaab, aabb, abab, abbb, ... \}$

baaaaab, babaabb,bbaabab bbbabbb, baaaaaaab,...}

L(bxayb) = {baaab, baabb, baaaab, baaabb, baabab,... bbaab, bbabb,bbaaab, bbaabb, bbabab,... baaaab, baaabb,baaaaab, baaaabb,... bbaaab, bbaabb,bbaaaab, bbaaabb,....}

Learnning Linear Patterns

Learning pattern languages

Example 1

 $C = \{aab, abb, aaab, aabb, abab, abbb \}$ $D = \{a, b, bbbb, abba, baaaaba, babbb\}$ $\pi = axb$

Example 5

 $D = \{a, b, bbbb, abb, baaaaba, babbb\}$

 $\pi = axxbbyaa$

Linear Patterns

• A pattern π is linear if each variable in π occurs only once in π .

Example

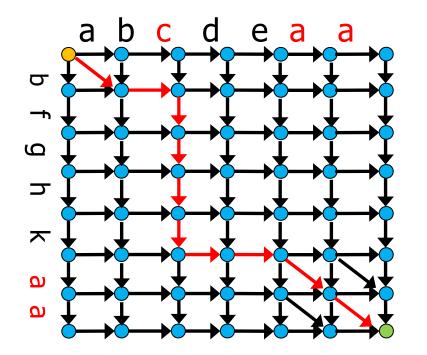
 $\Sigma = \{a, b\}, X = \{x, y, ...\}$

- Examples of linear patterns are axb, and aaxbybxa is not linear.
- When we are learning only linear patterns, the shortest linear patterns can be found by using the dynamic programming.
 - The algorithm is a modification of that for finding LCS "longest common subsequences" or edit distance.

Finding Linear Patterns(1)

Fill the cells from the top-left to the bottom-right. $min(left+1, up+1, up-left + (3 - 2\delta(c, d)))$ $\delta(c, d) = 1$ if c = d, $\delta(c, d) = 0$ o.w.

		а	b	С	d	е	а	а
	0	1	* 2	* 3	4	◆5	6	† 7
b	1	◆2	2	3	4	◆ 5	6	† 7
f	2							
g	3							
h	4							
k	⁴5							
а	6							
а	1 7							



Finding Linear Patterns(2)

• Follow the arrows from the bottom-right to the top-left.

		а	b	С	d	e	а	а
	0	1	* 2	* 3	4	◆5	6	† 7
b	1	◆2	2	3	4	* 5	6	₹7
f	2	-3	1 3	4	4	•6	4 7	8
g	3	4	4	◆5	♣	↓ 7	-8	₽9
h	4	4 5	† 5	6	47		4	10
k	⁴5	▲6	6	7		♣	10	1 1
а	6	6	7	8	9	10	10	11
а	↑ 7	7	8	9	10	1 1	1 1	11

Finding Linear Patterns(3)

• Follow the arrows from the bottom-right to the top-left.

		а	b	С	d	е	а	а
	0	1	* 2	* 3	4	◆ 5	6	† 7
b	1	◆2	2	3	4	* 5	6	7
f	2	•3	† 3	4	♣	-6	4 7	8
g	3	4	4	◆5	♣	4 7	-8	₽9
h	4	4 5	† 5	6	4		4	10
k	⁴5	4 6	6	7		♣	10	1 1
а	6	6	7	8	•9	10	10	11
а	↑ 7	7	8	•9	10	1 1	11	11

Preference of Patterns

The Third Problem

- Which rule is prefer?
 - What is the loss function $\text{Loss}(f, \mathbf{x})$ and the penalty function P(f)? $\operatorname{argmin}_{f \in H} (\Sigma_{\mathbf{x} \in Data} \operatorname{Loss}(f, \mathbf{x}) + \lambda P(f))$

Example 1

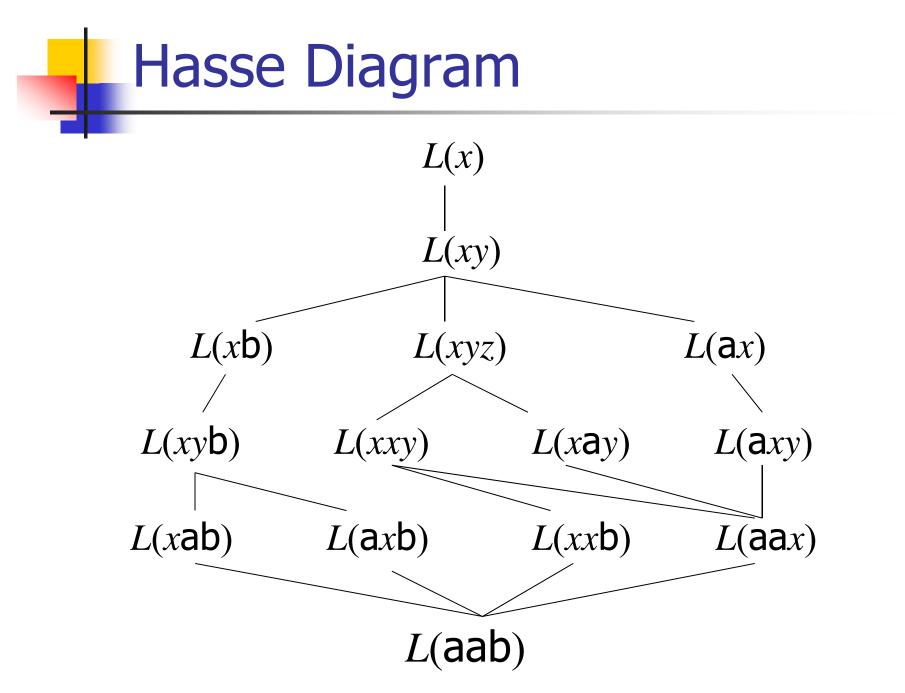
 $C = \{aab, abb, aaab, aabb, abab, abbb \}$ $D = \{a, b, bbbb, abba, baaaaba, babbb\}$ $\pi = axb$ or $\pi = ax$

Analysis of Patterns (1)

Lemma 1 For every string *s*, there are only finite number of pattern languages containing *s*.

Proof. If $s \in L(\pi)$, then $|s| \ge |\pi|$.

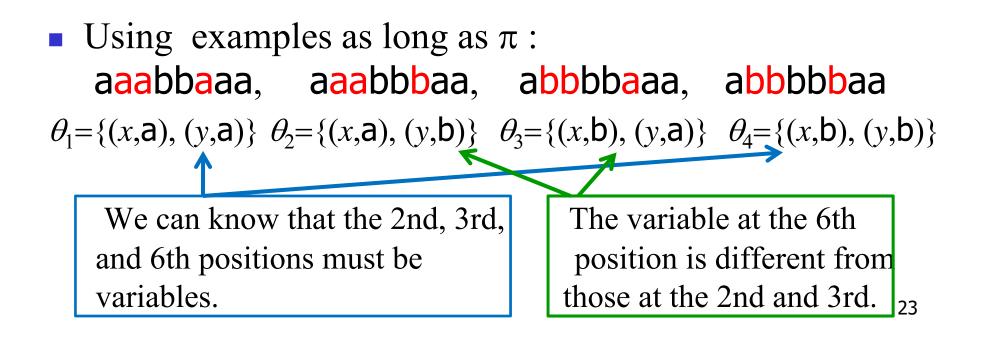
Example The languages containing s = aab are L(aab), L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x), L(xyb), L(xay), L(axy), L(xxy), L(xy), L(xyz),



Analysis of Patterns (2)

Example $\pi = axxbbyaa$

- *L*(axxbbyaa)
- ={aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa, aaaaabbaaa, aaaaabbbaa, aababbbbaaa, aababbbbaa,..., aabaaabaabbbbbbababaa,...}



Analysis of Patterns (3)

Any language L(π') containing the four strings must be a superset of L(π).

aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaaa, abbbbbaaa $\theta_1 = \{(x,a), (y,a)\} \ \theta_2 = \{(x,a), (y,b)\} \ \theta_3 = \{(x,b), (y,a)\} \ \theta_4 = \{(x,b), (y,b)\}$

- If π ' and π are of same length, π ' has more variables than π .
- If π ' is shorter than π , π ' has at least one variable with which some substring of π longer than 2 must be replaced.

Characteristic Set of $L(\pi)$

Let π be a pattern which contains variables x₁, x₂, ..., x_n.
 Consider the following substitutions:

$$\theta_{a} = \{(x_{1}, a), (x_{2}, a), ..., (x_{n}, a)\},\$$

$$\theta_{b} = \{(x_{1}, b), (x_{2}, b), ..., (x_{n}, b)\},\$$

$$\sigma_{1} = \{(x_{1}, a), (x_{2}, b), ..., (x_{n}, b)\},\$$

$$\sigma_n = \{(x_1, \mathbf{b}), (x_2, \mathbf{b}), ..., (x_n, \mathbf{a})\}$$

• The set $\{p\theta_a, p\theta_b, p\sigma_1, ..., p\sigma_n\}$ is a characteristic set of $L(\pi)$.

Anti-Unifcation of Strings

• For a set *C* of stings of same length

$$s_{1} = c_{11} c_{12} \dots c_{1i} \dots c_{1k}$$

$$s_{2} = c_{21} c_{22} \dots c_{2i} \dots c_{2k}$$

$$\dots$$

$$s_{n} = c_{n1} c_{n2} \dots c_{nj} \dots c_{nk}$$

the anti-unification of C is a pattern

$$\pi = \gamma(c_{11}c_{21}...c_{n1})\gamma(c_{12}c_{22}...c_{n2})...\gamma(c_{1k}c_{2k}...c_{nk})$$

where

 $\gamma(c_1c_2...c_n) = \begin{bmatrix} c & \text{if } c_1 = c_2 = ... = c_n = c \\ x_{\iota(c1c2...cn)} & \text{otherwise.} \end{bmatrix}$ and $\iota(c_1c_2...c_n)$ is the "index" of $c_1c_2...c_n$.