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Patterns(Monomials) and 
Machine Leaning
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Alphabets and Stings
  : a finite set of symbols and called an alphabet
  : the set of all finite strings (sequences) consisting of 

the symbols in 
 An empty string is denoted by .
   {}
 The size of a string w, denoted by | w |, is the total number of 

symbols occurring in w. 
Examples
 ab
  abaaabbabb aaaaab

aaaaabab
 ATCG
  ATCGAAAGTAAAA 
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Question
 Assume that we have provided

C  : a finite set of positive examples, and 
D : a finite  set of negative examples 
such that C D = .

 Develop a computer program to find a rule 
which accepts all positive examples and rejects 
all negative examples.
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The First and Second Problem
 What are rules?
 From where do the rules come?

 How can we generate the rules mechanically?
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 It could hold that every string in C1 starts with a and 
end with b.

Example 2
C2 = {ba bababa bababababababababa
D2 = {a bbbbbabbbaaaaba babbb

 It might hold that every string in C2 is made of some 
repetition of ba.
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 The rule which is output by a learning machine 
would represent a set

L1 = {ab aababb aaabaabbabab abbb
aaaab aaabb abaab abbbb
aaaabbbb

7



Patterns (Monomials)
 Let X be a countable set of variables

 Assuming  X =  
 A pattern  is an element of ( X)*

 That is, a pattern is a string consisting of symbols and variables.

Example
abX= {x, y,…}
axbaxbbyaaaxbybxa
 We sometime assume that every variable in a pattern is 

indexed, in the ordering of its first occurrence.

abX= {x1, x2, x3,…}
ax1bax1bbx2aaax1bx2bx1a

8



Substitution (1) 

 A substitution is a set of pairs 
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and 
1, 2, …, n are patterns. 

 Applying a substitution  to a pattern  is replacing every 
variable xi in  with i simultaneously. 
The result is denoted by  .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1  abbabbbaaaxbbya2 abyabbayba
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Substitution (2) 

 A substitution  ={ (x1,1), (x2,2), …, (xn,n) } is  non-
empty if all of 1, 2, …,n are in  X )+.

 A substitution grounds a pattern if  *. Such 
is called a grounding substitution for .

 A substitution  ={ (x1, y1), (x2, y2), …, (xn, yn) } is 
variable renaming if y1, y2, …, yn are distinct varaibles.
 We regard two patterns equivalent when each one is obtained 

from the other by renaming variables.
Examples

Two patterns axb and ayb are equivalent, and they are also 
equivalent to ax1b.
Two patterns aaxbxybxa and aaybxbya are equivalent, 
and they are also equivalent to aazbwbza and aax1bx2bx1a.
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Defining languages with patterns

 A language defined with a pattern  is 
{ = for some non-empty grounding substitution }

The language is denoted by L(). 
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbaabb baaaabbaaabbbaabab
bbaab bbabbbbaaabbbaabbbbabab
baaaabbaaabbbaaaaab baaaabb
bbaaabbbaabbbbaaaab bbaaabb11



Learnning Linear Patterns
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Learning pattern languages
Example 1
C = {aababbaaabaabbabababbb 
D = {a bbbbbabbabaaaaba babbb
 = axb

Example 5
C ={aaabbaaaaaabbbaa abbbbaaa abbbbbaa
D = {a bbbbbabbbaaaaba babbb
 = axxbbyaa
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Linear Patterns
 A pattern  is linear if each variable in  occurs only 

once in .
Example

abX= {x, y,…}
� Examples of linear patterns are  axb, and aaxbybxa is

not linear.

 When we are learning only linear patterns, the shortest 
linear patterns can be found by using the dynamic 
programming. 
 The algorithm is a modification of that for finding LCS 

“longest common subsequences” or edit distance. 14



Finding Linear Patterns(1)
 Fill the cells from the top-left to the bottom-right.

min(left+1, up+1 , up-left + (3  (c, d))
(c, d) = 1 if c = d,  (c, d) =  0 o.w. 

a b c d e a a
 1 2 3 4 5 6 7

b 1 2 2 3 4 5 6 7
f 2
g 3
h 4
k 5
a 6
a 7
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Edit Graph
a b c d e a a

b 
f 

g 
h  

k  
a

a
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Finding Linear Patterns(2)
 Follow the arrows from the bottom-right to the top-left．

a b c d e a a
 1 2 3 4 5 6 7

b 1 2 2 3 4 5 6 7
f 2 3 3 4 5 6 7 8
g 3 4 4 5 6 7 8 9
h 4 5 5 6 7 8 9 10

k 5 6 6 7 8 9 10 11

a 6 6 7 8 9 10 10 11

a 7 7 8 9 10 11 11 11
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Finding Linear Patterns(3)
 Follow the arrows from the bottom-right to the top-left．

a b c d e a a
 1 2 3 4 5 6 7

b 1 2 2 3 4 5 6 7
f 2 3 3 4 5 6 7 8
g 3 4 4 5 6 7 8 9
h 4 5 5 6 7 8 9 10

k 5 6 6 7 8 9 10 11

a 6 6 7 8 9 10 10 11

a 7 7 8 9 10 11 11 11
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Preference of Patterns
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The Third Problem
 Which rule is prefer?

 What is the loss function Loss(f, x) and 
the penalty function P(f )?

argminfH ( x Data Loss(f, x) +  P(f ))
Example 1
C = {aababbaaabaabbabababbb 
D = {a bbbbbabbabaaaaba babbb
 = axb or  = ax
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Analysis of Patterns (1)
Lemma 1 For every string s, there are only finite number 

of pattern languages containing s. 
Proof. If s L(), then |s|  ||. 

Example The languages containing s = aab are
L(aab),
L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),
L(xyb), L(xay), L(axy), L(xxy), L(xy),
L(xyz), 

21



Hasse Diagram
L(x)

L(xy)

L(xb) L(xyz)                   L(ax)

L(xyb)          L(xxy)           L(xay)         L(axy)

L(xab)          L(axb)           L(xxb)         L(aax)

L(aab)
22



Analysis of Patterns (2)
Example  = axxbbyaa

Laxxbbyaa
aaabbaaaaaabbbaa abbbbaaa abbbbbaa, 

aaaaabbaaaaaaaabbbaa aababbbaaa
aababbbbaa,…, aabaaabaabbbbbababaa,…}

 Using  examples as long as  : 
aaabbaaaaaabbbaa abbbbaaa abbbbbaa

{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,b), (y,b)}

We can know that the 2nd, 3rd,        The variable at the 6th  
and 6th positions must be                   position is different from 
variables.                                           those at the 2nd and 3rd.            23



Analysis of Patterns (3)
 Any language L(’) containing the four strings must be a 

superset of L().

aaabbaaaaaabbbaa abbbbaaa abbbbbaaa
{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,b), (y,b)}

 If ’ and  are of same length, ’ has more variables than 
 If ’ is shorter than , ’ has at least one variable with which 

some substring of longer than 2 must be replaced. 
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Characteristic Set of L()

 Let  be a pattern which contains variables x1, x2, ..., xn.  
Consider the following substitutions:

a = {(x1, a), (x2, a), ..., (xn, a)},
b = {(x1, b), (x2, b), ..., (xn, b)},
1 = {(x1, a), (x2, b), ..., (xn, b)},
…
n = {(x1, b), (x2, b), ..., (xn, a)}

 The set {pa, pb , p1, pn} is a characteristic set of 
L().
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Anti-Unifcation of Strings 
 For a set C of stings of same length

s1    = c11 c12…c1i …c1k

s2    = c21 c22…c2i…c2k

…
sn = cn1 cn2…cnj…cnk

the anti-unification of C is a pattern 
 = c11c21…cn1c12c22…cn2c1kc2k…cnk

where
c1c2…cn=     c if c1 = c2 = … = cn = c

x(c1c2…cn) otherwise.
and  c1c2…cnis the “index” of c1c2…cn. 26


