
Computational Learning Theory
Regular Expression vs. Monomilas

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Contents
 What about a regular expressions?
 Learning in the Limit
 General Theory of Learning from Positive Data

2

What About Regular Expressions?

3

Regular Expressions (1)
 Regular expression was invented by S. Kleene, a

mathematician, to represent sets in mathematics.
 Some interfaces of operating systems employ regular

expressions in order to sets of files, etc.
 Such an interface is sometimes called a “shell” in UNIX-

orgined operating systems, e.g. Ubuntu.
 Regular expressions can be used in the command window

(prompt) of MS Window systems.
$ ls *.c

$ ls [abc]*.c

4

Regular Expressions (2)
 Some commands in UNIX-origned operating systems

also employ regular expressions in order to represent
patterns of strings.
 Examples of such editors are ed, sed, vi, more, …

 Some programming languages based on manipulating
characters and strings are employ regular expressions.
 Examples of such languages are awk, perl, python,....

import re regex = r’ab+’
text = "abbabbabaaabb"
pattern = re.compile(regex) matchObj =
pattern.match(text)

5

Regular Expressions (3)
 From the history of their usage, so many variations and

modifications are invented and introduced into
particular commands or languages.

 The simplest regular expressions are constructed of
characters a, b, c and operations ・, |, and *，where a
string w of characters represents the set {w} and
 (R | S) represents the union R S
 (RS) represents the set of catenations

{wv | w R and v S }
 (R*) represents the set of Kleene Closure of R

6

Kleene Closure
 L0 = {}

Ln = L Ln = { uv | u L, v Ln } (n
L* = {}L L2 L3 … = Ln

 Sometimes the set L* is denoted by L+ .
Example

L ={aa, ab}
L2 ={aaaa, aaab, abaa, abab}
L3 ={aaaaaa, aaaaab, aaabaa, aaabab, abaaaa,…}
...

L* ={, aa, ab, aaaa, aaab, abaa, abab, aaaaaa,…}
7

n =1

Examples
Regular Expression R Set of strings L(R)

aababb {aababb}
(aab)|(abb) {aab, abb}
a(ab)* b {w | w = aub and uab}

={ab, aabb, aababb,…}
a(a | b)* b) {w | w = aub and uab }

={ab, aab, abb, aaab, aabb ,…}
a(aa | bb)* b) {w | w= aub and uaaab}

= {aaab, aabb, aaaaab, aaaabb, aabaab,
aababb, aaaaaaab,…}

8

Defining languages with patterns

 A language defined with a pattern is
{ = for some non-empty grounding substitution }

The language is denoted by L().
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbaabb baaaabbaaabbbaabab
bbaab bbabbbbaaabbbaabbbbabab
baaaabbaaabbbaaaaab baaaabb
bbaaabbbaabbbbaaaab bbaaabb9

RE vs. Monomials in Learning
 While both regular expressions and monomials

represents data set of strings, they are different when
we treat them in machine learning.

 Assume the case that an unknown (hidden)
representation R is learned from training examples in
the limit.
 If we adopt a regular expression to represent R, we

cannot learn R only from only positive examples,
i.e. unsupervised learning.

 If we adopt a monomial to represent R, we can
learn R only from only positive examples.

10

Learning in the Limit

Examples on L(R)
 We assume that, for an unknown rule R *,
C* is a finite set of positive examples on L(R*) and
D* is a finite set of negative examples on L(R*).

L(R) : the set represented by
the representation R
 a positive example on L(R) :

< x, +> for x L(M)
 a negative example on L(R) :

< x, > for x L(M)

L(R)

positive
examples

negative examples

12

Question
 If we give more and more (negative and positive)

examples on L(R*) to an learning algorithm, does it
eventually conjecture the unknown R* ?

 We have to give mathematical definitions of
 giving more and more examples, and

 or giving examples many enough
 conjecturing M eventually.

L(R)

D*

C*

R^ R

13

Assumption
 Without loss of generality, we may assume that learning

algorithm takes examples in C* and D* one by one.
 In the situation that both Ci and Di grow, we assume that

an infinite sequence of strings marked with either or
and some truncation of corresponds to Ci and Di.

Example
 : <ab,+>, <aab,+>, <bbb,>, <aaab,+>, <abba,>,…

Ci = {ab aabaaab
Di = {bbbabba

14

Presentations
Definition A presentation of L(R) is a infinite sequence
 < s0, p0 >, < s1, p1 >, < s2, p2 >, …
 where si and pi= or

 < s, +> is a positive example
 < s, > is a negative example

 [n] = < s0, p0>, < s1, p1 >, < s2, p2 >, …, < sn1, pn1 >
Definition A presentation is complete if

any x L(R) appears in as a positive example < x, +>
at least once and
any x L(R) appears in as a negative example < x, >
at least once.

15

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L(R) in the limit
from complete presentations if
for any complete presentation = x1, x2, x3, ... of L(R)
and the output sequence R1, R2, R3, ... of A, there exists
N such that for all n N Rn= R’ and L(R’) = L(R)

 A learning algorithm A BC-identifies L(R) in the limit
from complete presentations if
for any complete presentation = x1, x2, x3, ... of L(R)
and the output sequence R1, R2, R3, ... of A, there exists N
such that for all n N Rn= R’ and L(Rn) = L(R)

R1, R2, R3, ... x1, x2, x3, ...

16

A Well-known Result on RE

Theorem For every set L(R) represented by a regular
expression R, there exists a unique minimal expression
R’such that L(R)=L(R’).

17

Embedding the Modified Generate-and-Test
Algorithm into the Framework

Input = x1, x2, …: presentation (an infinite sequence)
Initialize k = 0 /* R0 is the simplest RE */
for N = 1,2,…

 = x1, x2, …, xN
forever
let k’ = k
for n = 1,2,…, N,

if (xn C and xn L(Rk’)) or (xn D and xn L(Rk’))
replace k with k + 1

if k’ = k
terminate and output Rk

Assume a procedure of enumerating all RE so that the enumeration
R0, R1, R2, …, Ri , … satisfies

| R0 | | R1 | | R2 | … | Ri | …

18

On the Generate-and-Test Algorithm
Theorem For any regular expression R*,

the modified generate-and-test algorithm EX-identifies L(R*) in
the limit from complete presentations.

Proof Let be an any complete presentation on L(R*).
Let RN be the output of the algorithm for the input [N].
If L(R*) L(RN), then there must be a string x

(xL(R*) and x L(RN)) or (xL(R*) and x L(RN)).
Since is complete, x must be appears in the sequence with the
sign + if xL(R) or otherwise with – .
This means that RN must be replaced with another expression, at
latest, when x appears in .
Once the algorithm outputs RN s.t. L(R*) = L(RN), it never
changes the output afterwards.

19

Revised version of learn-patterns

 Fix an effective enumeration of patterns on X
1, 2,…,

k = 1, = 1
for n = 1 forever

receive en = sn , bn
while (0 j n

(ej = sj , and sj L()) and
(ej = sj , and sj L())

 = ’ for an appropriate ’; k ++
output

20

Positive Presentations

 A presentation of L() is a infinite sequence
consisting of positive and negative example.

 A presentation is positive if consists only of
positive example < s, +> and any positive example
occurs at least once in .

1, 2, 3, ... e1, e2, e3, ...

L()

21

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit
from positive presentations if
for any positive presentation = s1, s2, s3, ... of L(g) and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit
from positive presentations if
for any positive presentation = s1, s2, s3, ... of L(g) and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(n) = L()

1, 2, 3, ... s1, s2, s3, ...

22

 A learning algorithm A EX-identifies a class C of
languages in the limit from psoitive presentations if
A EX-identifies every language in C in the limit from
positive presentations.

 A learning algorithm A BC-identifies a class C of
languages in the limit from positive presentations if
A BC-identifies every language in C in the limit from
positive presentations.

Identification in the limit [Gold]

23

Anti-Unifcation of Strings
 For a set C of stings of same length

s1 = c11 c12…c1i …c1k

s2 = c21 c22…c2i…c2k

…
sn = cn1 cn2…cnj…cnk

the anti-unification of C is a pattern
 = c11c21…cn1c12c22…cn2c1kc2k…cnk

where
c1c2…cn= c if c1 = c2 = … = cn = c

x(c1c2…cn) otherwise.
and c1c2…cnis the “index” of c1c2…cn. 24

Theorem The revised algorithm of Learn-pattern with
computing an anti-unification EX-identifies the class of all
pattern languages in the limit from positive presentations.

Identification of patterns

25

A Negative Result
Theorem [Gold] There is no learning algorithm which

identifies any regular expression from positive data.

26

A Negative Result (2)

e1, e1, …, e 2,...

N1+1

 We construct a positive presentation of L((ab)*)in the
following manner.

 Let e1 be a string in L. Since the regular expression e1 is
also in C and A must identify {e1}. So the first N1
examples of are all e1 , until “A identifies the regular
expression e1.”

h1,h2,h3,..., e1, e1, …

N1 n > N1 hn = e1

27

A Negative Result (3)
 Let the (N1+1)-th example be e2 which is different from

e1 .
 Since C contains e1| e2 , the learning algorithm A

identifies e1| e2 in the limit.

N1 n > N2 > N1 Rn = e1| e2

e1,e1,... e2,..., e3,...

N1+1

h1, h2,..., e1| e2 ,...,
e1| e2 ,...,

N2+1

28

A Negative Result (4)
 Let the (N2+1)-th example be e3 which is different from

both of e1 or e2.
 Since C contains e1| e2 | e3, A identifies e1| e2 | e3 in the

limit.

N3 n >N3 > N2> N1 hn = e1| e2 | e3

 The language L ={e1, e2 , e3 , e4,…} is a infinite and A
cannot identify L.

29

General Theory of Learning from
Positive Data

30

GCD and Learning
A class of languages in N :

L(N) = {L(m) | m N }
L(m) = {01…10 | n mod m = 0}

L(m) = {n N | n mod m = 0}

A class of languages in Z :
L(N) = {L(m) | m N }
L(m) = {1…1 | n mod m = 0} {01…1 | n mod m = 0}

L(m) = {n Z | | n | mod m = 0}

n

n n

31

Positive presentation
72, 48, 60, …,12,…

Conjecture
72, 24, 12,…,12,…

GCD and Learning

L(m)
Compute the GCD
of s1, s2, …, sk
with Euclidean
Algorithm

C

L(m)
L(m’)

 L(N) = {L(m) | m N }
L(m) = {01…10 | n mod m = 0}

32

Proving that L(N) is identifiable
 For every n N, the characteristic set of L(m) in L(N) is

{ m }, that is, { m } L(m’) implies L(m) L(m’).

 To see this, assume that { m } L(m’).
This is equivalent to m L(m’) and from the definition
of L(m’), m = k’ m’ for some k’ N (Z).
 L(m) = {n N | n mod m = 0} ({n Z | | n | mod m = 0}).

Let n be any element in L(m). Then, from the definition,
there exists k N (Z) such that n = k m. For the k’ and k,
it holds that n = k k’ m’. This means n L(m’), and
therefore L(m) L(m’).

33

Analysis of Patterns (1)
Example = axxbbyaa

Laxxbbyaa
aaabbaaaaaabbbaa abbbbaaa abbbbbaa,

aaaaabbaaaaaaaabbbaa aababbbaaa
aababbbbaa,…, aabaaabaabbbbbababaa,…}

 Using examples as long as :
aaabbaaaaaabbbaa abbbbaaa abbbbbaa

{(x,a), (y,a)} {(x,a), (y,b)} {(x,b), (y,a)} {(x,a), (y,b)}

We can know that the 2nd, 3rd, The variable at the 6th
and 6th positions must be position is different from
variables. those at the 2nd and 3rd. 34

Analysis of Patterns (2)
 Any language L(’) containing the four strings must be a

superset of L().

aaabbaaaaaabbbaa abbbbaaa abbbbbaa
{(x,a), (y,a)} {(x,a), (y,b)} {(x,b), (y,a)} {(x,a), (y,b)}

 If ’ and are of same length, ’ has more variables than
 If ’ is shorter than , ’ has at least one variable with which

some substring of longer than 2 must be replaced.

35

Characteristic Set of L()

 Let be a pattern which contains variables x1, x2, ..., xn.
Consider the following substitutions:

a = {(x1, a), (x2, a), ..., (xn, a)},
b = {(x1, b), (x2, b), ..., (xn, b)},
1 = {(x1, a), (x2, b), ..., (xn, b)},
…
n = {(x1, b), (x2, b), ..., (xn, a)}

 The set {pa, pb , p1, pn} is a characteristic set of
L().

36

A General Framework of Learning
 A class of formal languages L(G) indexed with G
 G: A set of expressions such that each expression in G

represents one language in L(G), and every language in
L(G) is represented by at least one expression in G.
 We assume that There is an algorithm which determines

whether or not wL(g) for every string w* and g.
Examples of G : a set of finite state automata, a set of CFGs,

a set of patterns,…
 G

g

g1

g2

37

C2: The Characteristic Set Property
 A subset C(g) of a language of L(g) is a characteristic

set of L(g) in L(G) if
(1) C(g) is a finite set and
(2) for every L(g’) L(G) C(g) L(g’) implies

L(g) L (g’)
Theorem [Kobayashi] A class L(G) of languages is
identifiable in the limit from positive presentation
if every language L(g) in L(G) has a characteristic set
C(g) in L(G).

38

Which grammar should be chosen?
 Choose g such that C(g) {s1,…, sn}

 The examples are from L(g*), that is, {s1,…, sn} L(g*).
and therefore C(g) L(g*). From the definition of
characteristic sets, this implies L(g) L(g*).
So over generalization never
happens.

L(g)
L(g*)

{s1,…,sn}

39

EC1: The Finite Tell-tale Property
 A subset T(g) of a language of L(g) is a finite tell-tale of

L(g) in L(G) if
(1) T(g) is a finite set and
(2) T(g) L(g’) L (g) for no L(g’) L(G) other

than L(g)
Theorem [Angluin] A class L(G) of languages is
identifiable in the limit from positive presentation if and
only if every language L(g) in L(G) has a finite tell-tail
T(g) in L(G) and there is a procedure which generates
elements of T(g) when the grammar g is given as an input.

40

Tell-tales and Characteristic Sets

Finite Tell-tale T(g) of L(g):
 T(g) ⊆L(g) (T is a finite set)
 For no L(g’)∈L(G) other than

L(g’), T(g)⊆L(g’)⊂L(g)
T(g) L(g)

Characteristic set C(g) of L(g):
 T(g) ⊆L(g) (T is a finite set)
 For every L(g’)∈L(G)

C(g)⊆L(g’) implies L(g) ⊆ L(g’)

L(g)C(g)

×

41

Analysis of Patterns (3)
Lemma 1 For every string s, there are only finite number

of pattern languages containing s.
Proof. If s L(), then |s| ||.

Example The languages containing s = aab are
L(aab),
L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),
L(xyb), L(xay), L(axy), L(xxy), L(xy),
L(xyz),

42

Hasse Diagram
L(x)

L(xy)

L(xb) L(xyz) L(ax)

L(xyb) L(xxy) L(xay) L(axy)

L(xab) L(axb) L(xxb) L(aax)

L(aab)
43

C4: Finite thickness
 A class L(G) of languages has the finite thickness if

for all w * there are only a finite number of
languages in L(G) which contain w.

Theorem [Angluin] A class L(G) of languages is
identifiable in the limit from positive presentation if
if L(G) of languages has the finite thickness.

44

L(N) has the Finite Thickness
 From the finite thickness condition:

L(N) = {L(m) | m N } has the finite thickness property.
 From the fact

GCD(e1, e2, …, ek) GCD(e1, e2, …, ek, ek+1)
and the following property:

Let a1, a2, …, an ,… be a infinite sequence of
natural numbers satisfying that

an an+1 for all n 1.
Then there is N 1 such that an an+1 for all n N.

45

C3:Finite Elasticity
 A class L(G) of languages has the infinite elasticity if

there is an infinite sequence of strings w0, w1, w2, …,
and an infinite sequence languages in L(G) L(g0), L(g1),
L(g2) such that
{w0, w1, ..., wn } L(gn) and wn L(gn) for every n 1.

A class L(G) of languages has the finite elasticity if it
does not have the infinite elasticity.

Th. [Wright] A class L(G) of languages is identifiable in
the limit from positive presentation if L(G) has the finite
elasticity.

46

Relation among the conditions

 EC1（necessary and sufficient） [Angluin]

 C2: [Kobayashi]

 C3: [Wright]

 C4: [Angluin]

⇒

⇒

⇒

⇒

⇒

⇒

U : a class of languages

47

Announcement
 The lectures on 28th November follow the

Schedule for Monday.
 The next lecture of this course is on 5th

December.

48

