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What About Regular Expressions?
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Regular Expressions (1)
 Regular expression was invented by S. Kleene, a 

mathematician, to represent sets in mathematics. 
 Some interfaces of operating systems employ regular 

expressions in order to sets of files, etc.
 Such an interface is sometimes called a “shell” in UNIX-

orgined operating systems, e.g. Ubuntu.
 Regular expressions can be used in the command window 

(prompt) of MS Window systems.
$ ls *.c 

$ ls [abc]*.c

4



Regular Expressions (2)
 Some commands in UNIX-origned operating systems 

also employ regular expressions in order to represent 
patterns of strings. 
 Examples of such editors are ed, sed, vi, more, …

 Some programming languages based on manipulating 
characters and strings are employ regular expressions.
 Examples of such languages are awk, perl, python,....

import re regex = r’ab+’
text = "abbabbabaaabb" 
pattern = re.compile(regex) matchObj = 
pattern.match(text)
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Regular Expressions (3)
 From the history of their usage, so many variations and 

modifications are invented and introduced into 
particular commands or languages. 

 The simplest regular expressions are constructed of 
characters a, b, c and operations ・, |, and *，where a 
string w of characters represents the set {w} and
 (R | S) represents the union R  S 
 (RS) represents the set of catenations

{wv |  w R and v S }
 (R*) represents the set of Kleene Closure of R

6



Kleene Closure
 L0 = {}  

Ln = L Ln = { uv | u  L, v  Ln } (n 
L* = {}L L2 L3 … = Ln

 Sometimes the set L*  is denoted by L+ .
Example 

L ={aa, ab}
L2 ={aaaa, aaab, abaa, abab}
L3 ={aaaaaa, aaaaab, aaabaa, aaabab, abaaaa,…}
...

L* ={, aa, ab, aaaa, aaab, abaa, abab, aaaaaa,…}
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Examples
Regular Expression R Set of strings L(R)

aababb {aababb}
(aab)|(abb) {aab, abb}
a(ab)* b                   {w | w = aub and uab}

={ab, aabb, aababb,…}
a(a | b)* b) {w | w = aub and uab }

={ab, aab, abb, aaab, aabb ,…}
a(aa | bb)* b) {w | w= aub and uaaab}

= {aaab, aabb, aaaaab, aaaabb, aabaab,
aababb, aaaaaaab,…}
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Defining languages with patterns

 A language defined with a pattern  is 
{ = for some non-empty grounding substitution }

The language is denoted by L(). 
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbaabb baaaabbaaabbbaabab
bbaab bbabbbbaaabbbaabbbbabab
baaaabbaaabbbaaaaab baaaabb
bbaaabbbaabbbbaaaab bbaaabb9



RE vs. Monomials in Learning
 While both regular expressions and monomials 

represents data set of strings, they are different when 
we treat them in machine learning.

 Assume the case that an unknown (hidden)
representation R is learned from training examples in 
the limit.
 If we adopt a regular expression to represent R, we 

cannot learn R only from only positive examples,
i.e. unsupervised learning. 

 If we adopt a monomial to represent R, we can
learn R only from only positive examples. 
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Learning in the Limit



Examples on L(R) 
 We assume that, for an unknown rule R *,
C* is a finite set of positive examples on L(R*) and
D* is a finite set of negative examples on L(R*).

L(R) : the set represented by 
the representation R
 a positive example on L(R) : 

< x, +> for  x  L(M)
 a negative example on L(R) : 

< x, > for  x  L(M)

L(R)


positive 
examples

negative examples
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Question
 If we give more and more (negative and positive) 

examples on L(R*) to an learning algorithm, does it  
eventually conjecture the unknown R* ?

 We have to give mathematical definitions of
 giving more and more examples, and 

 or giving examples many enough
 conjecturing M eventually.



L(R)

D*

C*

R^  R
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Assumption 
 Without loss of generality, we may assume that learning 

algorithm takes examples in C* and D* one by one.
 In the situation that both Ci and Di grow, we assume that 

an infinite sequence  of strings marked with either  or 
and some truncation of  corresponds to Ci and Di. 

Example
 : <ab,+>, <aab,+>, <bbb,>, <aaab,+>, <abba,>,… 

Ci = {ab aabaaab
Di = {bbbabba
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Presentations
Definition A presentation of L(R) is a infinite sequence
  < s0, p0 >, < s1, p1 >, < s2, p2 >, …   
 where si  and pi=  or  

 < s, +>  is a positive example
 < s, > is a negative example

 [n] = < s0, p0>, < s1, p1 >, < s2, p2 >, …, < sn1, pn1 >
Definition A presentation  is complete if 

any x  L(R) appears in as a positive example < x, +> 
at least once and 
any x  L(R) appears in as a negative example < x, > 
at least once. 
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L(R) in the limit 
from complete presentations if
for any complete presentation  = x1, x2, x3, ... of L(R) 
and the output sequence R1, R2, R3, ... of A,  there exists 
N such that for all n  N  Rn= R’ and L(R’) = L(R)

 A learning algorithm A BC-identifies L(R) in the limit 
from complete presentations if
for any complete presentation  = x1, x2, x3, ... of L(R) 
and the output sequence R1, R2, R3, ... of A, there exists N
such that for all n  N  Rn= R’ and L(Rn) = L(R) 

R1, R2, R3, ... x1, x2, x3, ... 
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A Well-known Result on RE

Theorem For every set L(R) represented  by a regular 
expression R, there exists a unique minimal  expression
R’such that L(R)=L(R’).
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Embedding the Modified Generate-and-Test 
Algorithm into the Framework

Input  = x1, x2, …:  presentation (an infinite sequence)
Initialize k = 0 /* R0 is the simplest RE */
for N = 1,2,… 

 = x1, x2, …, xN
forever
let  k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(Rk’ )) or (xn D and xn L(Rk’))
replace k with k + 1

if k’ = k
terminate and output Rk

Assume a procedure of enumerating all RE so that the enumeration 
R0, R1, R2, …, Ri , … satisfies

| R0 |  | R1 |  | R2 |  …  | Ri |  …
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On the Generate-and-Test Algorithm
Theorem For any regular expression R*, 

the modified generate-and-test algorithm EX-identifies L(R*) in 
the limit from complete presentations.

Proof Let  be an any complete presentation on L(R*). 
Let RN be the output of the algorithm for the input [N]. 
If L(R*)  L(RN), then there must be a string x  

(xL(R*) and x L(RN)) or (xL(R*) and x L(RN)). 
Since is complete, x must be appears in the sequence with the 
sign + if xL(R) or otherwise with – . 
This means that RN must be replaced with another expression, at 
latest, when x appears in . 
Once the algorithm outputs RN s.t. L(R*) = L(RN), it never 
changes the output afterwards. 
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Revised version of  learn-patterns 

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1 
for  n = 1  forever

receive en = sn , bn 
while ( 0  j  n

(ej = sj ,   and sj  L()) and
(ej = sj ,   and sj  L())

 = ’ for an appropriate ’; k ++
output 
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Positive Presentations

 A presentation of L() is a infinite sequence 
consisting of positive and negative example. 

 A presentation  is positive if  consists only of 
positive example < s, +> and any positive example 
occurs at least once in . 

1, 2, 3, ... e1, e2, e3, ...


L()
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit 
from positive presentations if
for any positive presentation  = s1, s2, s3, ... of L(g) and 
the output sequence 1, 2, 3, ... of A,  there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit 
from positive presentations if
for any positive presentation  = s1, s2, s3, ... of L(g) and 
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N  n= ’ and L(n) = L() 

1, 2, 3, ... s1, s2, s3, ...
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 A learning algorithm A EX-identifies a class C of 
languages in the limit from psoitive presentations if
A EX-identifies every language  in C in the limit from 
positive presentations. 

 A learning algorithm A BC-identifies a class C of 
languages in the limit from positive presentations if
A BC-identifies every language  in C in the limit from 
positive presentations.

Identification in the limit [Gold]
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Anti-Unifcation of Strings 
 For a set C of stings of same length

s1    = c11 c12…c1i …c1k

s2    = c21 c22…c2i…c2k

…
sn = cn1 cn2…cnj…cnk

the anti-unification of C is a pattern 
 = c11c21…cn1c12c22…cn2c1kc2k…cnk

where
c1c2…cn=     c if c1 = c2 = … = cn = c

x(c1c2…cn) otherwise.
and  c1c2…cnis the “index” of c1c2…cn. 24



Theorem The revised algorithm of Learn-pattern with
computing an anti-unification EX-identifies the class of all 
pattern languages in the limit from positive presentations. 

Identification of patterns
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A Negative Result
Theorem [Gold] There is no learning algorithm which 

identifies any regular expression from positive data. 
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A Negative Result (2)

e1, e1, …, e 2,...

N1+1

 We construct a positive presentation  of L((ab)*)in the 
following manner.  

 Let e1 be a string in L. Since the regular expression e1 is 
also in C and A must identify {e1}.  So the first N1
examples of  are all e1 , until “A identifies the regular 
expression e1.”

h1,h2,h3,..., e1, e1, …

N1 n > N1 hn = e1
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A Negative Result (3)
 Let the (N1+1)-th example be e2 which is different from

e1 .
 Since C contains e1| e2 , the learning algorithm A 

identifies e1| e2 in the limit.

N1 n > N2 > N1 Rn = e1| e2 

e1,e1,... e2,..., e3,...

N1+1

h1, h2,..., e1| e2 ,...,
e1| e2 ,...,

N2+1
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A Negative Result (4)
 Let the (N2+1)-th example be e3 which is different from

both of e1 or e2.
 Since C contains e1| e2 | e3, A identifies e1| e2 | e3 in the 

limit.

N3 n >N3 > N2> N1 hn = e1| e2 | e3

 The language L ={e1, e2 , e3 , e4,…} is a infinite and A
cannot identify L. 
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General Theory of Learning from 
Positive Data
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GCD and Learning 
A class of languages in N : 

L(N) = {L(m) | m  N } 
L(m) = {01…10 | n mod m = 0}

L(m) = {n  N |  n mod m = 0}

A class of languages in Z : 
L(N) = {L(m) | m  N } 
L(m) = {1…1 | n mod m = 0}  {01…1 | n mod m = 0}

L(m) = {n  Z |  | n | mod m = 0}

n

n n
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Positive presentation
72, 48, 60, …,12,…

Conjecture
72, 24, 12,…,12,…

GCD and Learning 

L(m)
Compute the GCD 
of s1, s2, …, sk
with Euclidean 
Algorithm

C

L(m)
L(m’)

 L(N) = {L(m) | m  N } 
L(m) = {01…10 | n mod m = 0}
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Proving that L(N) is identifiable
 For every n  N,  the characteristic set of L(m) in L(N) is 

{ m }, that is, { m } L( m’) implies  L(m) L(m’).

 To see this, assume that { m } L( m’).
This is equivalent to m L( m’) and from the definition 
of L( m’), m = k’ m’ for some k’  N (Z).
 L(m) = {n  N |  n mod m = 0} ( {n  Z |  | n | mod m = 0} ).

Let n be any element in  L(m). Then, from the definition,   
there exists k  N (Z) such that n = k m.  For the k’ and k,
it holds that n = k k’ m’. This means n L( m’), and    
therefore L(m) L(m’).
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Analysis of Patterns (1)
Example  = axxbbyaa

Laxxbbyaa
aaabbaaaaaabbbaa abbbbaaa abbbbbaa, 

aaaaabbaaaaaaaabbbaa aababbbaaa
aababbbbaa,…, aabaaabaabbbbbababaa,…}

 Using  examples as long as  : 
aaabbaaaaaabbbaa abbbbaaa abbbbbaa

{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,a), (y,b)}

We can know that the 2nd, 3rd,        The variable at the 6th  
and 6th positions must be                   position is different from 
variables.                                           those at the 2nd and 3rd.            34



Analysis of Patterns (2)
 Any language L(’) containing the four strings must be a 

superset of L().

aaabbaaaaaabbbaa abbbbaaa abbbbbaa
{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,a), (y,b)}

 If ’ and  are of same length, ’ has more variables than 
 If ’ is shorter than , ’ has at least one variable with which 

some substring of longer than 2 must be replaced. 
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Characteristic Set of L()

 Let  be a pattern which contains variables x1, x2, ..., xn.  
Consider the following substitutions:

a = {(x1, a), (x2, a), ..., (xn, a)},
b = {(x1, b), (x2, b), ..., (xn, b)},
1 = {(x1, a), (x2, b), ..., (xn, b)},
…
n = {(x1, b), (x2, b), ..., (xn, a)}

 The set {pa, pb , p1, pn} is a characteristic set of 
L().
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A General Framework of Learning
 A class of formal languages L(G) indexed with G
 G: A set of expressions such that each expression in G

represents one language in L(G), and every language in 
L(G) is represented by at least one expression in G.
 We assume that There is an algorithm which determines 

whether or not wL(g) for every string w* and g. 
Examples of G : a set of finite state automata, a set of CFGs, 

a set of patterns,…
 G

g

g1

g2
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C2: The Characteristic Set Property
 A subset C(g) of a language of L(g) is a characteristic 

set of L(g) in L(G) if 
(1) C(g) is a finite set and 
(2) for every L(g’)  L(G) C(g)  L(g’) implies  

L(g)  L (g’)
Theorem [Kobayashi] A class L(G) of languages is 
identifiable in the limit from positive presentation 
if every language L(g) in L(G) has a characteristic set 
C(g) in L(G).
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Which grammar should be chosen?
 Choose g such that C(g) {s1,…, sn}

 The examples are from L(g*), that is, {s1,…, sn} L(g*).
and therefore C(g) L(g*). From the definition of 
characteristic sets, this implies L(g) L(g*). 
So over generalization never
happens.

L(g)
L(g*)

{s1,…,sn}
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EC1: The Finite Tell-tale Property
 A subset T(g) of a language of L(g) is a finite tell-tale of      

L(g) in L(G) if 
(1) T(g) is a finite set and 
(2) T(g)  L(g’)  L (g) for no L(g’)  L(G) other 

than L(g)
Theorem [Angluin] A class L(G) of languages is 
identifiable in the limit from positive presentation if and 
only if every language L(g) in L(G) has a finite tell-tail 
T(g) in L(G) and there is a procedure which generates 
elements of T(g) when the grammar g is given as an input. 
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Tell-tales and Characteristic Sets 

Finite Tell-tale T(g) of L(g):
 T(g) ⊆L(g) (T is a finite set)
 For no L(g’)∈L(G) other than

L(g’),  T(g)⊆L(g’)⊂L(g)
T(g) L(g)

Characteristic set C(g) of L(g):
 T(g) ⊆L(g) (T is a finite set)
 For every L(g’)∈L(G)

C(g)⊆L(g’) implies L(g) ⊆ L(g’) 

L(g)C(g)

×
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Analysis of Patterns (3)
Lemma 1 For every string s, there are only finite number 

of pattern languages containing s. 
Proof. If s L(), then |s|  ||. 

Example The languages containing s = aab are
L(aab),
L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),
L(xyb), L(xay), L(axy), L(xxy), L(xy),
L(xyz), 
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Hasse Diagram
L(x)

L(xy)

L(xb) L(xyz)                   L(ax)

L(xyb)          L(xxy)           L(xay)         L(axy)

L(xab)          L(axb)           L(xxb)         L(aax)

L(aab)
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C4: Finite thickness
 A class L(G) of languages has the finite thickness if 

for all w *  there are only a finite number of 
languages in L(G) which contain w. 

Theorem [Angluin] A class L(G) of languages is 
identifiable in the limit from positive presentation if 
if L(G) of languages has the finite thickness. 
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L(N) has the Finite Thickness
 From the finite thickness condition:

L(N) = {L(m) | m  N } has the finite thickness property.
 From the fact 

GCD(e1, e2, …, ek ) GCD(e1, e2, …, ek, ek+1 )
and the following property:

Let  a1, a2, …, an ,… be a infinite sequence of 
natural numbers satisfying that

an   an+1 for all n  1.
Then there is N  1 such that an  an+1 for all n  N.
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C3:Finite Elasticity 
 A class L(G) of languages has the infinite elasticity if 

there is an infinite sequence of strings w0, w1, w2, …, 
and an infinite sequence languages in L(G) L(g0), L(g1), 
L(g2) such that
{w0, w1, ..., wn } L(gn) and wn L(gn) for every n 1. 

A class L(G) of languages has the finite elasticity if it 
does not have the infinite elasticity. 

Th. [Wright] A class L(G) of languages is identifiable in 
the limit from positive presentation if L(G) has the finite 
elasticity.
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Relation among the conditions

 EC1（necessary and sufficient） [Angluin]

 C2: [Kobayashi] 

 C3: [Wright]

 C4: [Angluin]

⇒

⇒

⇒

⇒

⇒

⇒

U : a class of languages 
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Announcement
 The lectures on 28th November follow the

Schedule for Monday.
 The next lecture of this course is on 5th

December.
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