Computational Learning Theory Regular Expression vs. Monomilas

Akihiro Yamamoto 山本 章博

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/ akihiro@i.kyoto-u.ac.jp

Contents

- What about a regular expressions?
- Learning in the Limit
- General Theory of Learning from Positive Data

What About Regular Expressions?

Regular Expressions (1)

- Regular expression was invented by S. Kleene, a mathematician, to represent sets in mathematics.
- Some interfaces of operating systems employ regular expressions in order to sets of files, etc.
 - Such an interface is sometimes called a "shell" in UNIXorgined operating systems, e.g. Ubuntu.
 - Regular expressions can be used in the command window (prompt) of MS Window systems.
 - \$ |s *.c
 - \$ Is [abc]*.c

Regular Expressions (2)

- Some commands in UNIX-origned operating systems also employ regular expressions in order to represent patterns of strings.
 - Examples of such editors are ed, sed, vi, more, ...
- Some programming languages based on manipulating characters and strings are employ regular expressions.
 - Examples of such languages are awk, perl, python,....

```
import re regex = r' ab+'
text = "abbabbabaaabb"
pattern = re.compile(regex) matchObj =
pattern.match(text)
```

Regular Expressions (3)

- From the history of their usage, so many variations and modifications are invented and introduced into particular commands or languages.
- The simplest regular expressions are constructed of characters a, b, C and operations •, |, and *, where a string w of characters represents the set {w} and
 - (R / S) represents the union $R \cup S$
 - (*RS*) represents the set of catenations

 $\{wv \mid w \in R \text{ and } v \in S\}$

• (R^*) represents the set of Kleene Closure of R

• Sometimes the set $L^* - \{\varepsilon\}$ is denoted by L^+ .

Example

$$L = \{aa, ab\}$$

$$L^{2} = \{aaaa, aaab, abaa, abab\}$$

$$L^{3} = \{aaaaaaa, aaaaaab, aaabaaa, aaabab, abaaaaaa, ...\}$$
...
$$L^{*} = \{\varepsilon, aa, ab, aaaa, aaab, abaa, abab, aaaaaaa,...\}$$

Regular Expression R	Set of strings $L(R)$
aababb	{aababb}
(aab) (abb)	{aab, abb}
a(ab)* b	$\{w \mid w = aub \text{ and } u \in \{ab\}^*\}$
	$=$ {ab, aabb, aababb,}
a(a b)* b)	$\{w \mid w = aub \text{ and } u \in \{a, b\}^* \}$
	={ab, aab, abb, aaab, aabb ,}
a(aa bb)* b) {w	$w \mid w = aub \text{ and } u \in \{\{aa\} \cup \{ab\}\}^*\}$
= {aaa	b, aabb, aaaaab, aaaabb, aabaab,
aab	abb, aaaaaaab,}

Defining languages with patterns

 A language defined with a pattern π is
 {σ | σ=πθ for some non-empty grounding substitution θ}
 The language is denoted by L(π).
 Example
 L(axb) = {aab, abb, aaab, aabb, abab, abbb,... }

 $L(ayb) = \{aab, abb, aaab, aabb, abab, abbb, ... \}$

baaaaab, babaabb,bbaabab bbbabbb, baaaaaaab,...}

L(bxayb) = {baaab, baabb, baaaab, baaabb, baabab,... bbaab, bbabb,bbaaab, bbaabb, bbabab,... baaaab, baaabb,baaaaab, baaaabb,... bbaaab, bbaabb,bbaaaab, bbaaabb,...}

RE vs. Monomials in Learning

- While both regular expressions and monomials represents data set of strings, they are different when we treat them in machine learning.
- Assume the case that an *unknown* (*hidden*)
 representation R is learned from training examples *in the limit*.
 - If we adopt a regular expression to represent *R*, we cannot learn *R* only from only positive examples, i.e. unsupervised learning.
 - If we adopt a monomial to represent *R*, we can learn *R* only from only positive examples.

Learning in the Limit

Examples on L(R)

• We assume that, for an unknown rule R_* , C_* is a finite set of positive examples on $L(R_*)$ and D_* is a finite set of negative examples on $L(R_*)$.

L(R): the set represented by the representation R

- a positive example on L(R): < x, +> for $x \in L(M)$
- a negative example on L(R): < x, -> for $x \in \overline{L(M)}$

Question

- If we give more and more (negative and positive) examples on L(R*) to an learning algorithm, does it eventually conjecture the unknown R*?
- We have to give mathematical definitions of
 - giving more and more examples, and
 - or giving examples many enough
 - conjecturing *M* eventually.

Assumption

- Without loss of generality, we may assume that learning algorithm takes examples in C_{*} and D_{*} one by one.
- In the situation that both C_i and D_i grow, we assume that an infinite sequence σ of strings marked with either + or -, and some truncation of σ corresponds to C_i and D_i .

Example σ : <ab,+>, <aab,+>, <bbb,->, <aab,+>, <abba,->, ..

$$C_i = \{ab, aab, aaab\},$$

 $D_i = \{bbb, abba\}.$

Presentations

Definition A presentation of L(R) is a infinite sequence

$$\sigma: \langle s_0, p_0 \rangle, \langle s_1, p_1 \rangle, \langle s_2, p_2 \rangle, \dots$$

where $s_i \in \Sigma^*$ and $p_i = +$ or $-$.

- < s, +> is a positive example
- < s, -> is a negative example

• $\sigma[n] = \langle s_0, p_0 \rangle, \langle s_1, p_1 \rangle, \langle s_2, p_2 \rangle, \dots, \langle s_{n-1}, p_{n-1} \rangle$

Definition A presentation σ is complete if

any $x \in L(R)$ appears in σ as a positive example $\langle x, + \rangle$ at least once and

any $x \in \overline{L(R)}$ appears in σ as a negative example $\langle x, -\rangle$ at least once.

- A learning algorithm *A* EX-identifies L(R) in the limit from complete presentations if for any complete presentation $\sigma = x_1, x_2, x_3, \dots$ of L(R)and the output sequence R_1, R_2, R_3, \dots of *A*, there exists *N* such that for all $n \ge N$ $R_n = R'$ and L(R') = L(R)
- A learning algorithm *A* BC-identifies L(R) in the limit from complete presentations if for any complete presentation $\sigma = x_1, x_2, x_3, \dots$ of L(R)and the output sequence R_1, R_2, R_3, \dots of *A*, there exists *N* such that for all $n \ge N \cdot \frac{R_n = R'}{R_n = R'}$ and $L(R_n) = L(R)$

A Well-known Result on RE

Theorem For every set L(R) represented by a regular expression R, there exists a unique minimal expression R'such that L(R)=L(R').

Embedding the Modified Generate-and-Test Algorithm into the Framework

Assume a procedure of enumerating all RE so that the enumeration $R_0, R_1, R_2, \ldots, R_i, \ldots$ satisfies $|R_0| \le |R_1| \le |R_2| \le \ldots \le |R_i| \le \ldots$ Input $\sigma = x_1, x_2, ...$: presentation (an infinite sequence) Initialize $k = 0 / R_0$ is the simplest RE */ for N = 1, 2, ... $\sigma[N] = x_1, x_2, \ldots, x_N$ forever let k' = kfor n = 1, 2, ..., N, if $(x_n \in C \text{ and } x_n \notin L(R_{k'}))$ or $(x_n \in D \text{ and } x_n \in L(R_{k'}))$ replace k with k + 1if k' = kterminate and output R_k

On the Generate-and-Test Algorithm

Theorem For any regular expression R_* ,

the modified generate-and-test algorithm EX-identifies $L(R_*)$ in the limit from complete presentations.

Proof Let σ be an any complete presentation on $L(R_*)$.

Let R_N be the output of the algorithm for the input $\sigma[N]$.

If $L(R_*) \neq L(R_N)$, then there must be a string $x \in \Sigma^*$

 $(x \in L(R_*) \text{ and } x \notin L(R_N)) \text{ or } (x \notin L(R_*) \text{ and } x \in L(R_N)).$

Since σ is complete, *x* must be appears in the sequence with the sign + if $x \in L(R)$ or otherwise with – .

This means that R_N must be replaced with another expression, at latest, when x appears in σ .

Once the algorithm outputs R_N s.t. $L(R_*) = L(R_N)$, it never changes the output afterwards.

Revised version of *learn-patterns*

• Fix an effective enumeration of patterns on $\Sigma \cup X$:

$$\pi_1, \pi_2, \ldots,$$

$$k = 1, \ \pi = \pi_{1}$$

for $n = 1$ forever
receive $e_{n} = \langle s_{n}, b_{n} \rangle$
while ($0 \le \exists j \le n$
 $(e_{j} = \langle s_{j}, + \rangle \text{ and } s_{j} \notin L(\pi))$ and
 $(e_{j} = \langle s_{j}, - \rangle \text{ and } s_{j} \in L(\pi))$
 $\pi = \pi'$ for an appropriate $\pi'; k ++$

output π

Positive Presentations $e_1, e_2, e_3, ...$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$

- A presentation of L(π) is a infinite sequence consisting of positive and negative example.
- A presentation σ is positive if σ consists only of positive example < s, +> and any positive example occurs at least once in σ.

Identification in the limit [Gold]

$$s_1, s_2, s_3, \dots$$
 n_1, π_2, π_3, \dots

A learning algorithm A EX-identifies L(π) in the limit from positive presentations if for any positive presentation σ = s₁, s₂, s₃, ... of L(g) and the output sequence π₁, π₂, π₃, ... of A, there exists N

such that for all n > N $\pi_n = \pi'$ and $L(\pi') = L(\pi)$

A learning algorithm A BC-identifies L(π) in the limit from positive presentations if

for any positive presentation $\sigma = s_1, s_2, s_3, \dots$ of L(g) and the output sequence $\pi_1, \pi_2, \pi_3, \dots$ of A, there exists Nsuch that for all n > N $\pi_n = \pi'$ and $L(\pi_n) = L(\pi)$

Identification in the limit [Gold]

- A learning algorithm A EX-identifies a class C of languages in the limit from psoitive presentations if A EX-identifies every language in C in the limit from positive presentations.
- A learning algorithm A BC-identifies a class C of languages in the limit from positive presentations if A BC-identifies every language in C in the limit from positive presentations.

Anti-Unifcation of Strings

• For a set *C* of stings of same length

$$s_{1} = c_{11} c_{12} \dots c_{1i} \dots c_{1k}$$

$$s_{2} = c_{21} c_{22} \dots c_{2i} \dots c_{2k}$$

$$\dots$$

$$s_{n} = c_{n1} c_{n2} \dots c_{nj} \dots c_{nk}$$

the anti-unification of C is a pattern

$$\pi = \gamma(c_{11}c_{21}...c_{n1})\gamma(c_{12}c_{22}...c_{n2})...\gamma(c_{1k}c_{2k}...c_{nk})$$

where

 $\gamma(c_1c_2...c_n) = \begin{bmatrix} c & \text{if } c_1 = c_2 = ... = c_n = c \\ x_{\iota(c1c2...cn)} & \text{otherwise.} \end{bmatrix}$ and $\iota(c_1c_2...c_n)$ is the "index" of $c_1c_2...c_n$.

24

Identification of patterns

Theorem The revised algorithm of *Learn-pattern* with computing an anti-unification EX-identifies the class of all pattern languages in the limit from positive presentations.

Theorem [Gold] There is no learning algorithm which identifies any regular expression from positive data.

A Negative Result (2)

- We construct a positive presentation σ of $L((ab)^*)$ in the following manner.
- Let e_1 be a string in *L*. Since the regular expression e_1 is also in C and A must identify $\{e_1\}$. So the first N_1 examples of σ are all e_1 , until "A identifies the regular expression e_1 ."

$$\exists N_1 \forall n > N_1 h_n = e_1$$

A Negative Result (3)

- Let the (N_1+1) -th example be e_2 which is different from e_1 .
- Since C contains $e_1 | e_2$, the learning algorithm A identifies $e_1 | e_2$ in the limit.

$$\exists N_{1} \forall n > N_{2} > N_{1} R_{n} = e_{1} | e_{2}$$

$$\underbrace{e_{1}, e_{1}, \dots e_{2}, \dots, e_{3}, \dots \bigoplus interval interval$$

A Negative Result (4)

- Let the (N₂+1)-th example be e₃ which is different from both of e₁ or e₂.
- Since C contains $e_1 | e_2 | e_3$, A identifies $e_1 | e_2 | e_3$ in the limit.

$$\exists N_3 \ \forall n > N_3 > N_2 > N_1 \ h_n = e_1 | \ e_2 | \ e_3$$

• The language $L = \{e_1, e_2, e_3, e_4, ...\}$ is a infinite and A cannot identify L.

General Theory of Learning from Positive Data

GCD and Learning

A class of languages in N : $L(N) = \{L(m) \mid m \in N \}$ $L(m) = \{0 \underbrace{1 \dots 1}_{n} 0 \mid n \mod m = 0\}$ $L(m) = \{n \in N \mid n \mod m = 0\}$

A class of languages in Z :

$$L(\mathbf{N}) = \{L(m) \mid m \in \mathbf{N} \}$$

$$L(m) = \{\underbrace{1...1}_{n} \mid n \mod m = 0\} \cup \{\underbrace{01...1}_{n} \mid n \mod m = 0\}$$

$$L(m) = \{n \in \mathbf{Z} \mid |n| \mod m = 0\}$$

Proving that L(N) is identifiable

• For every $n \in \mathbb{N}$, the characteristic set of L(m) in $L(\mathbb{N})$ is $\{m\}$, that is, $\{m\} \subseteq L(m')$ implies $L(m) \subseteq L(m')$.

• To see this, assume that $\{m\} \subseteq L(m')$. This is equivalent to $m \in L(m')$ and from the definition of L(m'), m = k'm' for some $k' \in \mathbf{N}(\mathbf{Z})$.

• $L(m) = \{n \in \mathbb{N} \mid n \mod m = 0\} (\{n \in \mathbb{Z} \mid |n| \mod m = 0\}).$ Let *n* be any element in L(m). Then, from the definition, there exists $k \in \mathbf{N}$ (**Z**) such that n = k m. For the k' and k, it holds that n = k k' m'. This means $n \in L(m')$, and therefore $L(m) \subseteq L(m')$.

Analysis of Patterns (1)

Example $\pi = axxbbyaa$

- *L*(axxbbyaa)
- ={aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa, aaaaabbaaa, aaaaabbbaa, aababbbbaaa, aababbbbaa,..., aabaaabaabbbbbbababaa,...}

Analysis of Patterns (2)

Any language L(π') containing the four strings must be a superset of L(π).

aaabbaaa, aaabbbaa, abbbbaaa, abbbbbaa $\theta_1 = \{(x,a), (y,a)\} \ \theta_2 = \{(x,a), (y,b)\} \ \theta_3 = \{(x,b), (y,a)\} \ \theta_4 = \{(x,a), (y,b)\}$

- If π ' and π are of same length, π ' has more variables than π .
- If π ' is shorter than π , π ' has at least one variable with which some substring of π longer than 2 must be replaced.

Characteristic Set of $L(\pi)$

Let π be a pattern which contains variables x₁, x₂, ..., x_n.
 Consider the following substitutions:

$$\theta_{a} = \{(x_{1}, a), (x_{2}, a), ..., (x_{n}, a)\},\$$

$$\theta_{b} = \{(x_{1}, b), (x_{2}, b), ..., (x_{n}, b)\},\$$

$$\sigma_{1} = \{(x_{1}, a), (x_{2}, b), ..., (x_{n}, b)\},\$$

$$\sigma_n = \{(x_1, \mathbf{b}), (x_2, \mathbf{b}), ..., (x_n, \mathbf{a})\}$$

• The set $\{p\theta_a, p\theta_b, p\sigma_1, ..., p\sigma_n\}$ is a characteristic set of $L(\pi)$.

A General Framework of Learning

- A class of formal languages L(G) indexed with G
- G: A set of expressions such that each expression in G represents one language in L(G), and every language in L(G) is represented by at least one expression in G.
 - We assume that There is an algorithm which determines whether or not w∈L(g) for every string w∈Σ* and g.
 Examples of G : a set of finite state automata, a set of CFGs, a set of patterns,...

C2: The Characteristic Set Property

- A subset C(g) of a language of L(g) is a characteristic set of L(g) in L(G) if
 - (1) C(g) is a finite set and
 - (2) for every $L(g') \in L(G)$ $C(g) \subseteq L(g')$ implies

 $L(g) \subseteq L(g')$

Theorem [Kobayashi] A class L(G) of languages is identifiable in the limit from positive presentation if every language L(g) in L(G) has a characteristic set C(g) in L(G).

Which grammar should be chosen?

- Choose *g* such that $C(g) \subseteq \{s_1, \dots, s_n\}$
 - The examples are from L(g*), that is, {s1,..., sn} ⊆ L(g*).
 and therefore C(g) ⊆ L(g*). From the definition of characteristic sets, this implies L(g) ⊆ L(g*).
 So over generalization never

happens.

EC1: The Finite Tell-tale Property

A subset T(g) of a language of L(g) is a finite tell-tale of L(g) in L(G) if

(1) T(g) is a finite set and

(2) $T(g) \subseteq L(g') \subseteq L(g)$ for no $L(g') \in L(G)$ other than L(g)

Theorem [Angluin] A class L(G) of languages is identifiable in the limit from positive presentation if and only if every language L(g) in L(G) has a finite tell-tail T(g) in L(G) and there is a procedure which generates elements of T(g) when the grammar g is given as an input.

Tell-tales and Characteristic Sets

Finite Tell-tale T(g) of L(g):

- $T(g) \subseteq L(g)$ (*T* is a finite set)
- For no $L(g') \in L(G)$ other than $L(g'), T(g) \subseteq L(g') \subset L(g)$

Characteristic set C(g) of L(g):

- $T(g) \subseteq L(g)$ (*T* is a finite set)
- For every $L(g') \in L(G)$
 - $C(g) \subseteq L(g')$ implies $L(g) \subseteq L(g')$

Analysis of Patterns (3)

Lemma 1 For every string *s*, there are only finite number of pattern languages containing *s*.

Proof. If $s \in L(\pi)$, then $|s| \ge |\pi|$.

Example The languages containing s = aab are L(aab), L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x), L(xyb), L(xay), L(axy), L(xxy), L(xy), L(xyz),

C4: Finite thickness

 A class L(G) of languages has the finite thickness if for all w ∈ Σ* there are only a finite number of languages in L(G) which contain w.

Theorem [Angluin] A class L(G) of languages is identifiable in the limit from positive presentation if if L(G) of languages has the finite thickness.

L(N) has the Finite Thickness

• From the finite thickness condition:

L(N) = {L(m) | m ∈ N } has the finite thickness property.
From the fact

 $GCD(e_1, e_2, ..., e_k) \ge GCD(e_1, e_2, ..., e_k, e_{k+1})$ and the following property:

Let $a_1, a_2, ..., a_n, ...$ be a infinite sequence of natural numbers satisfying that

 $a_n \ge a_{n+1}$ for all $n \ge 1$.

Then there is $N \ge 1$ such that $a_n = a_{n+1}$ for all $n \ge N$.

C3:Finite Elasticity

 A class L(G) of languages has the infinite elasticity if there is an infinite sequence of strings w₀, w₁, w₂, ..., and an infinite sequence languages in L(G) L(g₀), L(g₁), L(g₂) such that

 $\{w_0, w_1, ..., w_{n-1}\} \subseteq L(g_n)$ and $w_n \notin L(g_n)$ for every $n \ge 1$. A class L(G) of languages has the finite elasticity if it does not have the infinite elasticity.

Th. [Wright] A class L(G) of languages is identifiable in the limit from positive presentation if L(G) has the finite elasticity.

Relation among the conditions

U: a class of languages

EC1 (necessary and sufficient) [Angluin]
C2: [Kobayashi]
C3: [Wright]
C4: [Angluin]

Announcement

- The lectures on 28th November follow the Schedule for Monday.
- The next lecture of this course is on 5th December.