Introduction to Information Sciences

Information Theory
Shannon’s Source Code Theorem

mcuturi@i.kyoto-u.ac.jp
Summary of Today’s Lecture

- Reminders on last lecture
- Codes and uniquely decodable codes
- Shannon source code theorem
- Coding algorithms based on probabilities
 - Shannon-Fano codes
 - Huffman codes
- Heuristic approaches
 - Lempel-Ziv
For a random variable X taking values in a finite set \mathcal{X} with probability p, we call the entropy of X,

$$H(X) = - \sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$$

N i.i.d. random variables each with entropy $H(X)$ can be compressed into more than $NH(X)$ bits with negligible risk of information loss, as N tends to infinity.

Conversely, if they are compressed into fewer than $NH(X)$ bits it is virtually certain that information will be lost.
Entropy for binary random variables

- Two outcomes for a random variable \(X \), 0 or 1.
- Two probabilities, \(p_0 = p(X = 0) \) and \(p_1 = p(X = 1) \).
- Moreover, \(p_0 = p_1 - 1 \), hence \(H(X) = -p_1 \log p_1 - (1 - p_1) \log(1 - p_1) \).
- This is the curve represented below. \(H(X) = 1 \)

When \(p_1 = \frac{1}{2} \), the entropy is at its maximum...
...which is why we cannot do better, on average, than actually send 1,000,000 bits if we want to communicate 1,000,000 bits...
Whatever the method used to design the \textbf{signal}, if the word is made up of N \textbf{observations} of \textbf{i.i.d random variables} distributed like X, the \textbf{signal cannot be shorter on average than $NH(X)$}.
Information and Entropy

- Shannon’s source code theorem gives a lower bound.
- The reference length becomes $NH(X)$,
- The main question of coding and compression theory:

```
how to define compression mechanisms (codes) 
to transform messages into shorter signals 
so as to get as close as possible to Shannon’s bound 
without necessarily knowing $p$?
```
Codes
Code: Definition

Code: rule to **convert** a piece of **information** (e.g., a letter, word, phrase, gesture) into **another form**, not necessarily of the same type.

- For these lectures: Σ_1, Σ_2, two finite alphabets.
- A code: a partial function from Σ_1^* to Σ_2^*

$$C : U \subset \Sigma_1^* \rightarrow V \subset \Sigma_2^*$$
Types of Code

- Error Correcting Code: code strings in Σ_1^* as strings in Σ_2^*.
 - Of which Block Codes: $\Sigma_1^k \rightarrow \Sigma_2^n$

- Variable Length Code: only source symbols of Σ_1 are mapped to Σ_2^*.
Types of Code

- Variable Length Code: source symbols of Σ_1 mapped to Σ_2^*.
 - Non-singular codes: coding mechanism $C : \Sigma_1 \rightarrow \Sigma_2^*$ is injective.
 - Uniquely decodable codes: extension of C to Σ_1^* is non-singular.
 - Prefix Codes: $C(x) = m$ and $C(x') = m' \rightarrow m$ cannot be a prefix of m'.

Prefix Codes \subset Uniquely decodable codes \subset Non-singular codes \subset Var. Length
For each code below,

\[M_1 = \{ a \mapsto 0, b \mapsto 0, c \mapsto 1 \} \]
\[M_2 = \{ a \mapsto 0, b \mapsto 10, c \mapsto 110, d \mapsto 111 \} \]
\[M_3 = \{ a \mapsto 1, b \mapsto 011, c \mapsto 01110, d \mapsto 1110, e \mapsto 10011 \} \]
\[M_4 = \{ a \mapsto 0, b \mapsto 01, c \mapsto 011 \} \]

specify if the code is

Source Code Theorem
Shannon’s Source Code Theorem

- Suppose that X is a r.v. taking values in Σ_1.
- Let f be a **uniquely decodable** code from Σ_1 to Σ_2^* where $|\Sigma_2| = a$.
- Let S denote the random variable given by the wordlength $f(X)$.

If f is optimal (with minimal expected wordlength) for X, then

$$
\frac{H(X)}{\log_2 a} \leq \mathbb{E}S < \frac{H(X)}{\log_2 a} + 1
$$

(Shannon 1948)

ref: [Wikipedia article](https://en.wikipedia.org/wiki/Shannon%27s_source_coding_theorem)
Proof of Shannon’s Source Code Theorem

- Let s_i be the wordlength of each possible wordcode

 $$y_i \in \Sigma_2^*$$

 coding for the i^{th} symbol of Σ_1, i.e. $y_i = f(x_i)$.

- Define

 $$q_i = a^{-s_i}/C,$$

 where C is chosen so that $\sum q_i = 1$.
Two tools to prove it : Gibbs (KL)

Gibb’s Inequality

- Kullback-Leibler divergence between \(p = (p_1, \cdots, p_n) \) and \(q = (q_1, \cdots, q_n) \)

\[
D_{KL}(P\|Q) = \sum_{i=1}^{n} p_i \log_2 \frac{p_i}{q_i} \geq 0.
\]

- equivalently,

\[
- \sum_{i=1}^{n} p_i \log_2 p_i \leq - \sum_{i=1}^{n} p_i \log_2 q_i
\]
Two tools to prove it: Kraft

Kraft’s Inequality

- Let each source symbol from the alphabet

 \[S = \{ s_1, s_2, \ldots, s_n \} \]

 be encoded into a **uniquely decodable code** over an alphabet of size \(r \) with codeword lengths

 \[\ell_1, \ell_2, \ldots, \ell_n. \]

- Then \(\sum_{i=1}^{n} \left(\frac{1}{r} \right)^{\ell_i} \leq 1. \)

- Conversely,

 \[\forall \ell_1, \ell_2, \ldots, \ell_n \in \mathbb{N} \]

 satisfying the inequality, \(\exists \) a uniquely decodable code over an alphabet of size \(r \) with those codeword lengths.
Proof of Shannon’s Source Code Theorem

- Using the chain of inequalities,

\[
H(X) = - \sum_{i=1}^{n} p_i \log_2 p_i \leq - \sum_{i=1}^{n} p_i \log_2 q_i
\]

\[
= - \sum_{i=1}^{n} p_i \log_2 a^{-s_i} + \sum_{i=1}^{n} p_i \log_2 C
\]

\[
= - \sum_{i=1}^{n} p_i \log_2 a^{-s_i} + \log_2 C \leq - \sum_{i=1}^{n} -s_ip_i \log_2 a \leq \mathbb{E}S \log_2 a
\]

- the second line follows from *Gibbs’ inequality*.
- the fifth line follows from *Kraft’s inequality*.
Proof of Shannon’s Source Code Theorem

• For the second inequality we set

\[s_i = \lceil -\log_a p_i \rceil \]

so that

\[-\log_a p_i \leq s_i < -\log_a p_i + 1\]

and so

\[a^{-s_i} \leq p_i \]

and

\[\sum a^{-s_i} \leq \sum p_i = 1. \]
Proof of Shannon’s Source Code Theorem

- By Kraft’s inequality there exists a prefix-free code having those wordlengths.
- Thus the minimal S satisfies

$$
E S = \sum p_i s_i < \sum p_i (-\log_a p_i + 1) \\
= \sum -p_i \frac{\log_2 p_i}{\log_2 a} + 1 \\
= \frac{H(X)}{\log_2 a} + 1.
$$
Shannon-Fano Code
Lempel-Ziv

Lempel Ziv Animation