Foundation of Intelligent Systems, Part I

Statistical Learning Theory (III)

mcuturi@i.kyoto-u.ac.jp
• Hoeffding’s Inequality: \(P (|P_n f - P f| > \varepsilon) \leq 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}} \).

• With probability at least \(1 - \delta \),

\[
|P_n f - P f| \leq (b - a) \sqrt{\frac{\log \frac{2}{\delta}}{2n}}
\]
many functions have 0 empirical risk...
Today: VC-dimension, SVM’s

- Continue where we left:
 - Hoeffding’s bound for finite families
 - Hoeffding’s bound for countable families
 - Hoeffding’s bound for arbitrary families of functions
 - Growth function
 - VC dimension

- VC-dimension for linear classifiers

- SVM
Obtaining Uniform Bounds

• Simple example with two functions f_1 and f_2.

• Define the two sets of n-uples,

$$C_1 = \{((x_1, y_1), \cdots, (x_n, y_n)) \mid P f_1 - P_n f_1 > \varepsilon\}$$

and

$$C_2 = \{((x_1, y_1), \cdots, (x_n, y_n)) \mid P f_2 - P_n f_2 > \varepsilon\}$$

• These sets are the "bad" sets for which empirical risk is much lower than the real risk.
• For each, we have the Hoeffing’s inequalities (no absolute value), that

\[P(C_1) \leq \delta, P(C_2) \leq \delta \] \text{ where } \delta = e^{-2n\varepsilon^2}.

• Note that whenever a \(n \)-uple is in \(C_1 \cup C_2 \), then either

\[P(f_1 - P_nf_1) > \varepsilon \text{ or } P(f_2 - P_nf_2) > \varepsilon. \]

• Of course, \(P(C_1 \cup C_2) \leq P(C_1) + P(C_2) \leq 2\delta. \)

• Thus, with probability smaller than \(2\delta \) at least one of \(f_1 \) or \(f_2 \) will be such that

\[P(f_1 - P_nf_1) > \varepsilon. \text{ or } P(f_2 - P_nf_2) > \varepsilon. \]
Generalizing to N functions

- Consider f_1, \cdots, f_N functions.

- Define the corresponding sets of n-uples, C_1, \cdots, C_N with ε fixed.

- Of course,

\[
P(C_1 \cup C_2 \cup \cdots \cup C_N) \leq \sum_{i=1}^{N} P(C_i)
\]

- Use now Hoeffding’s inequality

\[
P(\exists f \in \{f_1, \cdots, f_N\} \mid P f - P_{n,f} > \varepsilon) = P \left(\bigcup_{i=1}^{N} C_i \right)
\]

\[
\leq \sum_{i=1}^{N} P(C_i) \leq N\delta = Ne^{-2n\varepsilon^2}
\]
We thus have that for any family of N functions,

$$P(\sup_{f \in \mathcal{F}} Pf - P_n f \geq \varepsilon) \leq Ne^{-2n\varepsilon^2},$$

or equivalently, that if $\mathcal{G} = \{g_1, \cdots, g_N\}$, with probability at least $1 - \delta$,

$$\forall g \in \mathcal{G}, \quad R(g) \leq R_n(g) + \sqrt{\frac{\log N + \log \frac{1}{\delta}}{2n}}$$
Recall that g^* is a function in \mathcal{G} such that $R(g^*) = \min_{g \in \mathcal{G}} R(g)$.

The inequality

$$R(g^*) \leq R_{n\text{emp}}(g^*) + \sup_{g \in \mathcal{G}} (R(g) - R_{n\text{emp}}(g)),$$

combined with $R_{n\text{emp}}(g^*) - R_{n\text{emp}}(g_n) \geq 0$ by definition of g_n, we get

$$R(g_n) = R(g_n) - R(g^*) + R(g^*) \leq R_{n\text{emp}}(g^*) - R_{n\text{emp}}(g_n) + R(g_n) - R(g^*) + R(g^*) \geq 0$$

$$\leq 2 \sup_{g \in \mathcal{G}} |R(g) - R_{n\text{emp}}(g)| + R(g^*)$$

Hence, with probability at least $1 - \delta$,

$$R(g_n) \leq R(g^*) + 2\sqrt{\frac{\log N + \log \frac{2}{\delta}}{2n}}$$
Hoeffding’s bound for countable families of functions

- Suppose now that we have a countable family \mathcal{F}
- Suppose that we assign a number $\delta(f) > 0$ to each $f \in \mathcal{F}$, which we use to set

$$P \left(|P f - P_n f| > \sqrt{\log\frac{2}{\delta(f)}} \right) \leq \delta(f),$$

- Using the union bound on a countable set (basic probability axiom),

$$P \left(\exists f \in \mathcal{F} : |P_n f - P f| > \sqrt{\log\frac{2}{\delta(f)}} \right) \leq \sum_{f \in \mathcal{F}} \delta(f).$$

- Let us set $\delta(f) = \rho p(f)$ with $\rho > 0$ and $\sum_{f \in \mathcal{F}} p(f) = 1$.
- Then with probability $1 - \rho$,

$$\forall f \in \mathcal{F}, P f \leq P_n f + \sqrt{\log\frac{1}{p(f)} + \log\frac{1}{\rho}}.$$
Hoeffding’s bound for general families of functions

- Two problems:
 - Most interesting families of functions are not countable.
 - Defining the weights $p(f)$ is not so obvious.

- However, what really matters for a sample z_1, \cdots, z_n is

$$F_{z_1, \cdots, z_n} = \{(f(z_1), f(z_2), \cdots, f(z_n)) : f \in \mathcal{F}\}$$

- F_{z_1, \cdots, z_n} is a large set of binary vectors $\subset \{0, 1\}^N$

- The more complex \mathcal{F}, the larger F_{z_1, \cdots, z_n} with maximum 2^n possible elements.

Definition 1 (Growth Function). The growth function of \mathcal{F} is equal to

$$S_{\mathcal{F}}(n) = \sup_{(z_1, \cdots, z_n)} |F_{z_1, \cdots, z_N}|$$
Theorem 1 (Vapnik-Chervonenkis). *For any $\delta > 0$, with probability at least $1 - \delta$,\[
\forall g \in \mathcal{G}, R(g) \leq R_n(g) + 2\sqrt{\frac{\log S_g(2n) + \log \frac{2}{\delta}}{n}}
\]*

- To prove it, we will need two lemmas,

Lemma 1 (Symmetrization). *For any $t > 0$ such that $nt^2 \geq 2$, and any n' more independent samples of P,*

\[
P(\sup_{f \in \mathcal{F}} P f - P_n f \geq t) \leq 2P(\sup_{f \in \mathcal{F}} P'_{n'} f - P_{n} f \geq t/2)
\]

Lemma 2 (Chebyshev’s Inequality). *For any $t > 0$,*

\[
P(|X - \mathbb{E}[X]| \geq t) \leq \frac{\text{var } X}{t^2}
\]
The VC bound holds for any probability distribution.

As a result, it might be too loose. A density dependent result is given, using Definition 2. The VC entropy is defined as

$$H_F(n) = \log \mathbb{E}[|F_{z_1,\ldots,z_N}|]$$

The bound is then

Theorem 2. For any $$\delta > 0$$, with probability at least $$1 - \delta$$,

$$\forall g \in \mathcal{G}, R(g) \leq R_n(g) + 2\sqrt{\frac{H_G(2n)}{n} + \log \frac{2}{\delta}}$$
Definition 3 (VC Dimension). The VC dimension of a class \(G \) is the largest \(n \) such that

\[
S_G(n) = 2^n.
\]

- Since \(n \) points can have \(2^n \) configurations, the VC dimension is the largest number of points which can be shattered (i.e. split arbitrarily) by the function class.
- The VC dimension of linear classifiers in \(\mathbb{R}^d \) is \(d + 1 \).
Given the VC dimension \(h \) of a family \(\mathcal{G} \), we can prove

\[
\forall g \in \mathcal{G}, R(g) \leq R_n(g) + 2\sqrt{\frac{h \log \frac{2en}{h} + \log \frac{2}{\delta}}{n}}
\]

Lemma 3 (Vapnik and Chervonenkis, Sauer, Shelah). Let \(\mathcal{G} \) be a class of functions with finite VC-dimension \(h \). Then,

\[
\forall n \in \mathbb{N}, S_{\mathcal{G}}(n) \leq \sum_{i=0}^{h} \binom{n}{i},
\]

\[
\forall n \geq h, S_{\mathcal{G}}(n) \leq \left(\frac{en}{h} \right)^h.
\]

• Combining with VC theorem, we obtain the result given above.

• Important thing: difference between true and empirical risks is at most of the order of

\[
\sqrt{\frac{h \log n}{n}}
\]