Foundation of Intelligent Systems, Part I

Regression 2

mcuturi@i.kyoto-u.ac.jp
Some Words on the Survey

What is your main goal in taking this class?
Please check one or two boxes.

- I know nothing about machine learning, so I just need an introduction
- I know a few machine learning algorithms, but I would like to have a better theoretical understanding
- I know a few machine learning algorithms, but I would like to learn about more advanced ones
- I would like to understand how to use machine learning algorithms for a particular application (for instance, vision, bioinformatics etc.)

Not enough answers to say anything meaningful!

- Try again: survey.
Last Week

Regression: highlight a functional relationship between a *predicted variable* and *predictors*
Regression: highlight a functional relationship between a predicted variable and predictors

find a function f such that

$\forall (x, y)$ that can appear, $f(x) \approx y$
Regression: highlight a functional relationship between a predicted variable and predictors to find an accurate function f such that

$$\forall (x, y) \text{ that can appear }, f(x) \approx y$$

use a data set & the least-squares criterion:

$$\min_{f \in F} \frac{1}{N} \sum_{j=1}^{N} (y_j - f(x_j))^2$$
Last Week

Regression: highlight a functional relationship between a **predicted variable** and **predictors**

- when regressing a **real number** vs a **real number**:

 ![Scatter plot of Rent vs. Surface](image)

 - Least-Squares Criterion \(L(b, a_1, \cdots, a_p) \) to fit **lines**, polynomials.
 - results in solving a linear system.

 \[
 \frac{\partial^2 \text{order}(b, a_1, \cdots, a_p)}{\partial a_p} = \text{linear in } (b, a_1, \cdots, a_p)
 \]

 - When setting \(\frac{\partial L}{\partial a_p} = 0 \) we get \(p + 1 \) **linear** equations for \(p + 1 \) variables.
Regression: highlight a functional relationship between a predicted variable and predictors

- when regressing a real number vs \(d\) real numbers (vector in \(\mathbb{R}^d\)),
 - find best fit \(\alpha \in \mathbb{R}^n\) such that \((\alpha^T x + \alpha_0) \approx y\).
 - Add to \(d \times N\) data matrix, a row of 1’s to get the predictors \(X\).
 - The row \(Y\) of predicted values
 - The Least-Squares criterion also applies:
 \[
 L(\alpha) = \|Y - \alpha^T X\|^2 = \left(\alpha^T XX^T \alpha - 2YX^T \alpha + \|Y\|^2\right).
 \]
 \[
 \nabla_\alpha L = 0 \quad \Rightarrow \quad \alpha^* = (XX^T)^{-1} XY^T
 \]
- This works if \(XX^T \in \mathbb{R}^{d\times d}\) is invertible.
Last Week

\[(X^*X') \setminus (X^*Y') \]

\[
\text{ans} = \begin{align*}
-0.049332605603095 & \times \text{age} \\
0.163122792160298 & \times \text{surface} \\
-0.004411580036614 & \times \text{distance} \\
2.731204399433800 & + 27.300 \text{ JPY}
\end{align*}
\]
Today

- A statistical / probabilistic perspective on LS-regression
- A few words on polynomials in higher dimensions
- A geometric perspective
- Variable co-linearity and Overfitting problem
- Some solutions: advanced regression techniques
 - Subset selection
 - Ridge Regression
 - Lasso
A (very few) words on the statistical/probabilistic interpretation of LS
• Assume that the values of y are stochastically linked to observations x as

$$y - (\alpha^T x + \beta) \sim \mathcal{N}(0, \sigma).$$

• This difference is a random variable called ε and is called a residue.
The Statistical Perspective on Regression

• This can be rewritten as,

\[y = (\alpha^T x + \beta) + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma), \]

• We assume that the difference between \(y \) and \((\alpha^T x + b) \) behaves like a Gaussian (normally distributed) random variable.

Goal as a statistician: Estimate \(\alpha \) and \(\beta \) given observations.
Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assume that the parameters are $\alpha = a, \beta = b$
Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assume that the parameters are $\alpha = a, \beta = b$
- In such a case, what would be the probability of each observation (x_j, y_j)?
Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: **assuming that the parameters are** $\alpha = a, \beta = b$, what would be the **probability** of each observation?

 - For each couple $(x_j, y_j), j = 1, \cdots, N$,

 $$P(x_j, y_j \mid \alpha = a, \beta = b) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2}\right)$$
Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assuming that the parameters are $\alpha = a$, $\beta = b$, what would be the probability of each observation?:
 - For each couple $(x_j, y_j), j = 1, \cdots, N$,
 \[
P(x_j, y_j \mid \alpha = a, \beta = b) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)
 \]
 - Since each measurement (x_j, y_j) has been independently sampled,
 \[
P \left(\{(x_j, y_j)\}_{j=1,\cdots,N} \mid \alpha = a, \beta = b \right) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)
 \]
Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assuming that the parameters are $\alpha = a, \beta = b$, what would be the probability of each observation?:
 - For each couple $(x_j, y_j), j = 1, \cdots, N$,
 \[
P(x_j, y_j | \alpha = a, \beta = b) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)
 \]
 - Since each measurement (x_j, y_j) has been independently sampled,
 \[
P \left(\{(x_j, y_j)\}_{j=1}^{N} | \alpha = a, \beta = b \right) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)
 \]
 - A.K.A likelihood of the dataset $\{(x_j, y_j)_{j=1,\cdots,N}\}$ as a function of a and b,
 \[
 \mathcal{L}_{\{(x_j,y_j)\}}(a,b) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)
 \]
Hence, for a, b, the **likelihood** function on the dataset $\{(x_j, y_j)_{j=1, \ldots, N}\}$...

$$
\mathcal{L}(a, b) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{\|y_j - (a^T x_j + b)^2}{2\sigma^2} \right)
$$
Maximum Likelihood Estimation (MLE) of Parameters

Hence, for a, b, the **likelihood** function on the dataset $\{(x_j, y_j)_{j=1, \ldots, N}\}$...

$$L(a, b) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)$$

Why not use the **likelihood** to **guess** (a, b) given data?
Hence, for a, b, the **likelihood** function on the dataset $\{(x_j, y_j)_{j=1,\ldots,N}\}$...

$$
\mathcal{L}(a, b) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(- \frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)
$$

...the **MLE** approach selects the values of (a, b) which **maximize** $\mathcal{L}(a, b)$
Maximum Likelihood Estimation (MLE) of Parameters

Hence, for a, b, the **likelihood** function on the dataset $\{(x_j, y_j)_{j=1,\ldots,N}\}$...

\[
\mathcal{L}(a, b) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\|y_j - (a^T x_j + b)\|^2}{2\sigma^2} \right)
\]

...the **MLE** approach selects the values of (a, b) which **maximize** $\mathcal{L}(a, b)$

- **Since** $\max_{(a,b)} \mathcal{L}(a, b) \Leftrightarrow \max_{(a,b)} \log \mathcal{L}(a, b)$

\[
\log L(a, b) = C - \frac{1}{2\sigma^2} \sum_{j=1}^{N} \|y_j - (a^T x_j + b)\|^2
\]

- **Hence** $\max_{(a,b)} \mathcal{L}(a, b) \Leftrightarrow \min_{(a,b)} \sum_{j=1}^{N} \|y_j - (a^T x_j + b)\|^2$...
Statistical Approach to Linear Regression

- Properties of the MLE estimator: convergence of $\|\alpha - a\|$?
- Confidence intervals for coefficients,
- Tests procedures to assess if model “fits” the data,

![Residues Histogram Relative Frequency](image)

- Bayesian approaches: instead of looking for one optimal fit (a, b) juggle with a whole density on (a, b) to make decisions
- etc.
A few words on polynomials in higher dimensions
A few words on polynomials in higher dimensions

- For d variables, that is for points $\mathbf{x} \in \mathbb{R}^d$,
 - the space of polynomials on these variables up to degree p is generated by
 \[
 \{ \mathbf{x}^\mathbf{u} \mid \mathbf{u} \in \mathbb{N}^d, \mathbf{u} = (u_1, \cdots, u_d), \sum_{i=1}^{d} u_i \leq p \}
 \]
 where the monomial $\mathbf{x}^\mathbf{u}$ is defined as $x_1^{u_1} x_2^{u_2} \cdots x_d^{u_d}$
 - Recurrence for dimension of that space: $\dim_{p+1} = \dim_p + \binom{p+1}{d+p}$
- For $d = 20$ and $p = 5$, $1 + 20 + 210 + 1540 + 8855 + 42504 > 50.000$

Problem with polynomial interpolation in high-dimensions is the explosion of relevant variables (one for each monomial)
Geometric Perspective
Recall the problem:

\[
X = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
x_1 & x_2 & \cdots & x_N \\
\vdots & \vdots & \ddots & \vdots
\end{bmatrix} \in \mathbb{R}^{d+1 \times N}
\]

and

\[
Y = [y_1 \quad \cdots \quad y_N] \in \mathbb{R}^N.
\]

We look for \(\alpha\) such that \(\alpha^T X \approx Y\).
Back to Basics

• If we transpose this expression we get $X^T\alpha \approx Y^T$,

$$
\begin{bmatrix}
1 & x_{1,1} & \cdots & x_{d,1} \\
1 & x_{1,2} & \cdots & x_{d,2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1,k} & \cdots & x_{d,k} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1,N} & \cdots & x_{d,N}
\end{bmatrix}
\times
\begin{bmatrix}
\alpha_0 \\
\vdots \\
\alpha_d
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
\vdots \\
y_2 \\
\vdots \\
y_M
\end{bmatrix}
$$

• Using the notation $Y = Y^T$, $X = X^T$ and X_k for the $(k+1)^{th}$ column of X,

$$
\sum_{k=0}^{d} \alpha_k X_k \approx Y
$$

• Note how the X_k corresponds to all values taken by the k^{th} variable.

• Problem: approximate/reconstruct Reconstructing $Y \in \mathbb{R}^N$ using $X_0, X_1, \cdots, X_d \in \mathbb{R}^N$?
Reconstructing $\mathbf{Y} \in \mathbb{R}^N$ using $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$ vectors of \mathbb{R}^N.

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$.

Consider the observed vector in \mathbb{R}^N of predicted values.
Reconstructing $\mathbf{Y} \in \mathbb{R}^N$ using $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$ vectors of \mathbb{R}^N.

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$

Plot the first regressor \mathbf{X}_0...
Reconstructing $\mathbf{Y} \in \mathbb{R}^N$ using $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$ vectors of \mathbb{R}^N.

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$.

Assume the next regressor \mathbf{X}_1 is colinear to \mathbf{X}_0...
Reconstructing $\mathbf{Y} \in \mathbb{R}^N$ using $\mathbf{X}_0, \mathbf{X}_1, \ldots, \mathbf{X}_d$ vectors of \mathbb{R}^N.

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_0, \mathbf{X}_1, \ldots, \mathbf{X}_d$ and so is \mathbf{X}_2...
Reconstructing \(Y \in \mathbb{R}^N \) using \(X_0, X_1, \ldots, X_d \) vectors of \(\mathbb{R}^N \).

- Our ability to approximate \(Y \) depends implicitly on the space spanned by \(X_0, X_1, \ldots, X_d \).

Very little choices to approximate \(Y \)...
Reconstructing $Y \in \mathbb{R}^N$ using X_0, X_1, \cdots, X_d vectors of \mathbb{R}^N.

- Our ability to approximate Y depends implicitly on the space spanned by X_0, X_1, \cdots, X_d

Suppose X_2 is actually not colinear to X_0.
Reconstructing $\mathbf{Y} \in \mathbb{R}^N$ using $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$ vectors of \mathbb{R}^N.

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_0, \mathbf{X}_1, \cdots, \mathbf{X}_d$

This opens new ways to reconstruct \mathbf{Y}.
Linear System

Reconstructing $Y \in \mathbb{R}^N$ using X_0, X_1, \ldots, X_d vectors of \mathbb{R}^N.

- Our ability to approximate Y depends implicitly on the space spanned by X_0, X_1, \ldots, X_d.

When X_0, X_1, X_2 are linearly independent,
Reconstructing $Y \in \mathbb{R}^N$ using X_0, X_1, \cdots, X_d vectors of \mathbb{R}^N.

- Our ability to approximate Y depends implicitly on the space spanned by X_0, X_1, \cdots, X_d.

Y is in their span since the space is of dimension 3.
Reconstructing $Y \in \mathbb{R}^N$ using X_0, X_1, \cdots, X_d vectors of \mathbb{R}^N.

- Our ability to approximate Y depends implicitly on the space spanned by X_0, X_1, \cdots, X_d.

The dimension of that space is $\text{Rank}(X)$, the rank of X.

$\text{Rank}(X) \leq \min(d + 1, N)$.
Three cases depending on \textbf{Rank X} and d, N

1. \textbf{Rank X} < N. \textit{$d + 1$ column vectors do not span} \mathbb{R}^N
 - For arbitrary Y, there is \textbf{no solution} to $\alpha^T X = Y$

2. \textbf{Rank X} = N and $d + 1 > N$, \textbf{too many variables span the whole of} \mathbb{R}^N
 - \textbf{infinite} number of solutions to $\alpha^T X = Y$.

3. \textbf{Rank X} = N and $d + 1 = N$, \textbf{# variables = # observations}
 - Exact and unique solution: $\alpha = X^{-1}Y$ we have $\alpha^T X = Y$

In most applications, $d + 1 \neq N$ so we are either in case 1 or 2
Case 1: Rank $X < N$

- **no solution** to $\alpha^T X = Y$ (equivalently $X\alpha = Y$) in general case.
- What about the **orthogonal projection** of Y on the image of X.

\[\hat{Y} = \underset{u \in \text{span } \{X_0, X_1, \ldots, X_d\}}{\text{argmin}} \|Y - u\|\]

- Namely the point \hat{Y} such that

$\text{span } \{X_0, X_1, \ldots, X_d\}$
Case 1: Rank $X < N$

Lemma 1. $\{X_0, X_1, \cdots, X_d\}$ is a l.i. family $\iff X^TX$ is invertible
Case 1: Rank $X < N$

- Computing the projection $\hat{\omega}$ of a point ω on a subspace V is well understood.
- In particular, if (X_0, X_1, \cdots, X_d) is a basis of $\text{span}\{X_0, X_1, \cdots, X_d\}$

 (that is $\{X_0, X_1, \cdots, X_d\}$ is a linearly independent family)

 ... then (X^TX) is invertible and ...

 $$\hat{Y} = X(X^TX)^{-1}X^TY$$

- This gives us the α vector of weights we are looking for:

 $$\hat{Y} = X \underbrace{(X^TX)^{-1}X^T}_{\hat{\alpha}}Y = X\hat{\alpha} \approx Y \text{ or } \hat{\alpha}^TX = Y$$

- What can go wrong?
Case 1: Rank $X < N$

- If X^TX is invertible,
 \[\hat{Y} = X(X^TX)^{-1}X^T Y \]

- If X^TX is not invertible... we have a problem.

- If X^TX’s condition number
 \[\frac{\lambda_{\text{max}}(X^TX)}{\lambda_{\text{min}}(X^TX)} \]
 is very large, a small change in Y can cause dramatic changes in α.

- In this case the linear system is said to be **badly conditioned**...

- Using the formula
 \[\hat{Y} = X(X^TX)^{-1}X^T Y \]
 might return garbage as can be seen in the following Matlab example.
Case 2: Rank $X = N$ and $d + 1 > N$

high-dimensional low-sample setting

- Ill-posed inverse problem, the set

$$\{ \alpha \in \mathbb{R}^d \mid X\alpha = Y \}$$

is a whole vector space. We need to choose one from many admissible points.

- When does this happen?
 - High-dimensional low-sample case (DNA chips, multimedia etc.)

- How to solve for this?
 - Use something called regularization.
A practical perspective:
Colinearity and Overfitting
A Few High-dimensions Low sample settings

- DNA chips are very long vectors of measurements, one for each gene

- Task: regress a health-related variable against gene expression levels

A Few High-dimensions Low sample settings

- Emails represented as bag-of-words email \(j = \begin{bmatrix}
 \vdots \\
 \text{please} = 2 \\
 \vdots \\
 \text{send} = 1 \\
 \vdots \\
 \text{money} = 2 \\
 \vdots \\
 \text{assignment} = 0 \\
 \vdots
\end{bmatrix} \in \mathbb{R}^d \)

- Task: regress probability that this is an email against bag-of-words

Image: http://clg.wlv.ac.uk/resources/junk-emails/index.php
Correlated Variables

- Suppose you run a real-estate company.

- For each apartment you have compiled a few hundred predictor variables, e.g.
 - distances to conv. store, pharmacy, supermarket, parking lot, etc.
 - distances to all main locations in Kansai
 - socio-economic variables of the neighborhood
 - characteristics of the apartment

- Some are obviously correlated (correlated = “almost” colinear)
 - distance to Post Office / distance to Post ATM

- In that case, we may have some problems (Matlab example)

Source: http://realestate.yahoo.co.jp/
Overfitting

- Given \(d \) variables (including constant variable), consider the least squares criterion

\[
L_d (\alpha_1, \cdots, \alpha_d) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} \right\|^2
\]

- Add any variable vector \(x_{d+1,j}, j = 1, \cdots, N \), and define

\[
L_{d+1}(\alpha_1, \cdots, \alpha_d, \alpha_{d+1}) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} - \alpha_{d+1} x_{d+1,j} \right\|^2
\]
Overfitting

- Given d variables (including constant variable), consider the least squares criterion

$$L_d(\alpha_1, \cdots, \alpha_d) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} \right\|^2$$

- Add any variable vector $x_{d+1,j}$, $j = 1, \cdots, N$, and define

$$L_{d+1}(\alpha_1, \cdots, \alpha_d, \alpha_{d+1}) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} - \alpha_{d+1} x_{d+1,j} \right\|^2$$

THEN $\min_{\alpha \in \mathbb{R}^{d+1}} L_{d+1}(\alpha) \leq \min_{\alpha \in \mathbb{R}^{d}} L_d(\alpha)$
Overfitting

- Given \(d \) variables (including constant variable), consider the least squares criterion

\[
L_d (\alpha_1, \cdots, \alpha_d) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} \right\|^2
\]

- Add any variable vector \(\mathbf{x}_{d+1,j}, j = 1, \cdots, N \), and define

\[
L_{d+1} (\alpha_1, \cdots, \alpha_d, \alpha_{d+1}) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} - \alpha_{d+1} x_{d+1,j} \right\|^2
\]

Then \(\min_{\alpha \in \mathbb{R}^{d+1}} L_{d+1}(\alpha) \leq \min_{\alpha \in \mathbb{R}^{d}} L_d(\alpha) \)

why? \(L_d (\alpha_1, \cdots, \alpha_d) = L_{d+1} (\alpha_1, \cdots, \alpha_d, 0) \)
Overfitting

- Given d variables (including constant variable), consider the least squares criterion

$$L_d (\alpha_1, \cdots, \alpha_d) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} \right\|^2$$

- Add any variable vector $x_{d+1,j}, j = 1, \cdots, N$, and define

$$L_{d+1} (\alpha_1, \cdots, \alpha_d, \alpha_{d+1}) = \sum_{i=1}^{j} \left\| y_j - \sum_{i=1}^{d} \alpha_i x_{i,j} - \alpha_{d+1} x_{d+1,j} \right\|^2$$

Then $\min_{\alpha \in \mathbb{R}^{d+1}} L_{d+1}(\alpha) \leq \min_{\alpha \in \mathbb{R}^d} L_d(\alpha)$

why? $L_d (\alpha_1, \cdots, \alpha_d) = L_{d+1} (\alpha_1, \cdots, \alpha_d, 0)$

Residual-sum-of-squares goes down... but is it relevant to add variables?
Occam’s razor formalization of overfitting

Minimizing least-squares (RSS) is not clever enough. We need another idea to avoid overfitting.

- **Occam’s razor**: *lex parsimoniae*

- **law of parsimony**: principle that recommends selecting the hypothesis that makes the fewest assumptions.

 one should always opt for an explanation in terms of the fewest possible causes, factors, or variables.

Advanced Regression Techniques
Quick Reminder on Vector Norms

- For a vector $a \in \mathbb{R}^d$, the Euclidian norm is the quantity

$$\|a\|_2 = \sqrt{\sum_{i=1}^{d} a_i^2}.$$

- More generally, the q-norm is for $q > 0$,

$$\|a\|_q = \left(\sum_{i=1}^{d} |a_i|^q \right)^{\frac{1}{q}}.$$

- In particular for $q = 1$,

$$\|a\|_1 = \sum_{i=1}^{d} |a_i|$$

- In the limit $q \to \infty$ and $q \to 0$,

$$\|a\|_\infty = \max_{i=1,\ldots,d} |a_i|.$$

$$\|a\|_0 = \# \{i \mid a_i \neq 0\}.$$
Tikhonov Regularization ’43 - Ridge Regression ’62

- Tikhonov’s motivation: solve **ill-posed inverse problems** by **regularization**
- If \(\min_\alpha L(\alpha) \) is achieved on many points... consider
 \[
 \min_\alpha L(\alpha) + \lambda \|\alpha\|^2_2
 \]
- We can show that this leads to selecting
 \[
 \hat{\alpha} = (X^T X + \lambda I_{d+1})^{-1} X Y
 \]
- The condition number has changed to
 \[
 \frac{\lambda_{\max}(X^T X) + \lambda}{\lambda_{\min}(X^T X) + \lambda}.
 \]
Subset selection : Exhaustive Search

• Following Ockham’s razor, ideally we would like to know for any value p

$$\min_{\alpha, \|\alpha\|_0=p} L(\alpha)$$

• → select the best vector α which only gives weights to p variables.

• → Find the best combination of p variables.

Practical Implementation

• For $p \leq n$, $\binom{n}{p}$ possible combinations of p variables.

• Brute force approach: generate $\binom{n}{p}$ regression problems and select the one that achieves the best RSS.

Impossible in practice with moderately large n and $p...\binom{30}{5} = 150.000$
Subset selection: Forward Search

Since the exact search is **intractable in practice**, consider the **forward** heuristic

- **In Forward search:**
 - define $I_1 = \{0\}$.
 - given a set $I_k \subset \{0, \cdots, d\}$ of k variables, **what is the most informative variable one could add?**
 - Compute for each variable i in $\{0, \cdots, d\} \setminus I_k$

 $$t_i = \min_{(\alpha_k)_{k \in I_k}, \alpha} \sum_{j=1}^{N} \left\| y_j - \left(\sum_{k \in I_k} \alpha_k x_{k,j} + \alpha x_{i,j} \right) \right\|^2$$
 - Set $I_{k+1} = I_k \cup \{i^*\}$ for any i^* such that $i^* = \min t_i$.
 - $k = k + 1$ until desired number of variables
Subset selection: Backward Search

... or the **backward** heuristic

In Backward search:

- define $I_d = \{0, 1, \cdots, n\}$.
- given a set $I_k \subset \{0, \cdots, d\}$ of k variables, **what is the least informative variable** one could **remove**?
 - Compute for each variable i in I_k

$$t_i = \min_{(\alpha_k)_{k \in I_k \setminus \{i\}}} \sum_{j=1}^{N} \left\| y_j - \left(\sum_{k \in I_k \setminus \{i\}} \alpha_k x_{k,j} \right) \right\|^2$$

- Set $I_{k-1} = I_k \setminus \{i^*\}$ for any i^* such that $i^* = \max t_i$.
- $k = k - 1$ until desired number of variables
Subset selection: LASSO

Naive Least-squares

$$\min_{\alpha} L(\alpha)$$

Best fit with \(p \) variables (Occam!)

$$\min_{\alpha, \|\alpha\|_0=p} L(\alpha)$$

Tikhonov regularized Least-squares

$$\min_{\alpha} L(\alpha) + \lambda \|\alpha\|_2^2$$

LASSO (least absolute shrinkage and selection operator)

$$\min_{\alpha} L(\alpha) + \lambda \|\alpha\|_1$$