Exercise 1: Classification - Hoeffding’s and V.C Bounds

• Choose two gaussian densities p_{-1}, p_{+1} on \mathbb{R} with unit variance and mean in $[-1,1]$. We consider a pair of random variables (X,Y) where the density of (X,Y) is defined by the following: $p(Y = 1) = 0.65$ and the density of $p(X|Y = 1)$ is equal to p_{+1} while $p(X|Y = -1)$ is equal to p_{-1}.

• Consider $N = 20$ different linear classifiers on \mathbb{R}, that is step functions defined by a threshold τ and a sign $t \in \{-1,1\}$ as

$$f_{t,\tau}(x) = \begin{cases} t & \text{if } x > \tau \\ -t & \text{if } x \leq \tau \end{cases}.$$

Choose $t \in \{-1,1\}$ and $\tau \in [-2,2]$ randomly and uniformly.

• Give a detailed illustration of Hoeffding’s bound for the supremum of the difference of the empirical risk and the true risk for the set of N functions considered above, by sampling 200 sets of $n = 20, 50, 100$ independent observations of (X,Y). In order to do so, you will need to compute the true risk of each of the Heaviside functions (the Error function might be useful) and sample randomly from the densities p_{-1} and p_{+1}. Try to split these steps using short subroutines to improve overall readability of your code.

\[\text{http://en.wikipedia.org/wiki/Normal_distribution}\]
\[\text{http://en.wikipedia.org/wiki/Error_function}\]
We have studied Vapnik Chervonenkis bounds for infinite families of functions. Give an expression for this bound when considering all possible translations and multiplications by \{-1, 1\} of the Heaviside-functions. Your bound should only depend on the threshold \(\varepsilon\) and sample size \(n\). Find a condition on \(N\) for which the VC bound is tighter (that is, provides a lower bound) than Hoeffding’s bound.