Efficient Frequent Connected Induced Subgraph Mining in Graphs of Bounded Tree-width

Tamás Horváth¹,², Keisuke Otaki³, Jan Ramon⁴

¹ Dept. of Compute Science, University of Bonn, Germany
² Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
³ Dept. of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan
⁴ Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium

General setting for frequent pattern mining in graphs: Given

- A database
 \[D = \{G_1, \ldots, G_n\} \]
 with
 \[G_i \in \mathcal{G} \]
 for some graph class \(\mathcal{G} \),
 a pattern language \(\mathcal{P} \),
 a matching operator \(\Rightarrow \),
 a frequency threshold \(t \in \mathbb{N} \),

list all frequent patterns, i.e., all patterns \(P \in \mathcal{P} \) satisfying

\[\left| \{ G \in D : P \Rightarrow G \} \right| \geq t \]

thm: Computational intractable if no restriction on \(\mathcal{G} \)

main result: The frequent pattern mining problem can be solved in incremental polynomial time for the following problem setting:

- \(\mathcal{G} \): bounded tree-width graphs,
- \(\mathcal{P} \): connected bounded tree-width graphs,
- \(\Rightarrow \): induced subgraph isomorphism

Significance of the Result

Theoretical:
- Computationally intractable pattern matching operators do not imply the intractability of frequent pattern mining problems
 - induced subgraph isomorphism is NP-complete
 even for graphs of bounded tree-width 2

Practical:
- Graphs of small tree-width form a practically relevant graph class
 - e.g., 99.99% of the chemical graphs in the ZINC dataset (~ 16.5 million compounds) have tree-width at most 3

Problem and Main Result

- **General setting for frequent pattern mining in graphs:** Given
- **list all frequent patterns**, i.e., all patterns \(P \in \mathcal{P} \) satisfying
 \[\left| \{ G \in D : P \Rightarrow G \} \right| \geq t \]
- **thm:** Computational intractable if no restriction on \(\mathcal{G} \)
- **main result:** The frequent pattern mining problem can be solved in incremental polynomial time for the following problem setting:
 - \(\mathcal{G} \): bounded tree-width graphs,
 - \(\mathcal{P} \): connected bounded tree-width graphs,
 - \(\Rightarrow \): induced subgraph isomorphism

Notions

- **P is induced subgraph isomorphic to G** if \(G \) has and induced subgraph isomorphic to \(P \)
- A graph \(G \) with \(n \) vertices is a **k-tree** if one of the following conditions holds:
 - \(n = k \) and \(G \) is a clique, or
 - \(n > k \) and \(G \) can be obtained from a \(k \)-tree \(G' \) with \(n-1 \) vertices by introducing a new vertex \(v \) and connecting \(v \) with all vertices of a \(k \)-clique of \(G' \)
- A graph of **tree-width at most k:** subgraph of \(k \)-tree
- Give rise to certain trees, called **tree-decompositions**
 - Many NP-hard problems on arbitrary graphs can be decided **efficiently** for graphs of bounded tree-width by dynamic programming algorithms operating on tree-decompositions
 - **Bad news:** induced subgraph isomorphism is NP-complete for \(tw = 2 \)

Note on listing complexity:
- **Polynomial delay:** Durations of printing outputs are bounded by polynomial of the size of the input
- **Incremental polynomial delay:** Durations of printing outputs are bounded by the combined size of the input and the set of outputs printed before the current pattern