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Abstract

Phillippe de Groote has introduced a new grammar formalism called Abstract
Categorial Grammars (ACGs) based on simply typed linear lambda calcu-
lus. Not only can ACGs explain various problematic linguistic phenomena
in elegant ways, but also they encode mildly context-sensitive formalisms
in straightforward ways. This thesis is concerned with the mathematical
properties of some simple extensions and restrictions of ACGs. In particu-
lar, the aspect of ACGs as a generalization of well-established grammar for-
malisms including those mildly context-sensitive formalisms is investigated.
Extensions and restrictions of ACGs that we discuss are non-linear ACGs,
lexicalized forms of ACGs, and two-dimensional ACGs.

While the linearity constraint on ACGs is considered reasonable for sev-
eral reasons, non-linear λ-terms enable ACGs to represent some linguistic
phenomena in a more natural fashion. We show that relaxing the linearity
constraint by allowing vacuous λ-abstraction does not increase the expressive
power of ACGs. Our conversion entails that allowing or disallowing deleting
rules in some existing grammar formalisms does not change their generative
power.

Although the origin of ACGs is located in a history of categorial gram-
mars, ACGs are not necessarily lexicalized grammars by definition, unlike
usual categorial grammar formalisms. Not only from the lexicalist’s point of
view but also from a computational point of view, the restriction to lexical-
ized ACGs is an important issue. We show that some subclasses of ACGs
admit lexicalization in the sense that each grammar in one of these sub-
classes can be converted into an equivalent lexicalized grammar belonging to
the same class.

Two-dimensional extensions of ACGs define relations among languages
generated by ACGs, and are able to model the relations between sentences
and their meanings of natural language. We investigate the generative capac-
ity of two-dimensional ACGs through encoding some well-known tree trans-
ducers.
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Chapter 1

Introduction

One important attractive feature of so-called categorial grammars as a tool
for modeling natural language is that a sentence and its meaning are derived
from one common proof in the underlying logic. However, several linguistic
phenomena are found that cannot be explained by the Lambek Grammar [29],
which is the most representative categorial grammar formalism. Among sev-
eral modifications (e.g., Morrill [37], Moortgat [35,36], Oehrle [40,41]) of the
Lambek Grammar, de Groote [15] has introduced a new grammar formalism
called Abstract Categorial Grammars (ACGs), which is based on the impli-
cational fragment of the linear logic. De Groote’s approach is essentially
the same as Oehrle’s, but the ACG formalism radically simplifies Oehrle’s
formalism. While in Oehrle’s formalism, the underlying logic contains the
conjunction and word forms are represented by a special kind of typed λ-
terms, ACGs represent word forms and meanings as well as the derivation
structures for them by simply typed linear λ-terms. While Muskens [38] has
independently proposed a formalism almost equivalent to ACGs, we deal with
ACGs because of their formal simplicity and tractability for mathematical
discussion.

ACGs have a number of theoretically and linguistically attractive fea-
tures as a grammar formalism for natural language. Although ACGs are
not a variety of Lambek grammars, they inherit the virtues of categorial
grammars. Moreover, ACGs give elegant explanations for several linguistic
phenomena that cannot be treated well by Lambek grammars, such as the
ambiguity of the scopes of quantifiers in a sentence like “every man loves

a woman”. While usual categorial grammars treat word forms and mean-
ings asymmetrically, ACGs treat word forms as λ-terms as well as meanings.
This simplification enables ACGs generate diverse types of languages, be-
cause typed λ-terms, which constitute the languages of ACGs, can represent
diverse types of data including not only strings and meaning representations,
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2 Chapter 1. Introduction

but also trees, lists, and so on. Besides, the simply typed linear lambda cal-
culus has been studied very well so far. Hence we have plenty of useful tools
for investigating the mathematical properties of ACGs.

The mathematical properties of ACGs have close relationship with so-
called mildly context-sensitive grammars rather than usual categorial gram-
mars. Since some linguistic phenomena, such as cross-serial dependencies
in Dutch, were found that cannot be captured by context-free grammars
(CFGs), several cautious extensions of CFGs, called mildly context-sensitive
grammars, have been proposed and studied. Some formalisms are known to
be equivalent; classes of languages defined by combinatory categorial gram-
mars, head grammars, linear indexed grammars, and tree adjoining gram-
mars (TAGs) are all equivalent [22, 55, 56]. Moreover, linear context-free
rewriting systems (LCFRSs), multiple context-free grammars, minimalist
grammars, and multi-component TAGs (MCTAGs) define the same class of
languages [33, 34, 49, 56]. Recent studies [16, 18, 19, 58] on ACGs have shown
that ACGs are powerful enough to encode those types of mildly context-
sensitive grammars. They have presented straightforward encodings of CFGs,
TAGs, non-deleting non-duplicating context-free tree grammars (CFTGs),
LCFRSs, MCTAGs, where derivation structures in the original grammar are
preserved. For instance, the ACG encoding a TAG generates derived trees
through λ-terms encoding derivation trees of the TAG. Moreover, de Groote
and Pogodalla [19] implicitly introduce a hierarchy of ACGs according to
the complexity of λ-terms and types appearing in each ACG, and then asso-
ciate the variety of context-free formalisms, namely, CFGs, non-deleting non-
duplicating CFTGs, and LCFRSs, with the hierarchy of ACGs. In this sense,
the ACG can be thought of as a generalization of mildly context-sensitive for-
malisms. To study ACGs would be to study those well-established grammar
formalisms. In fact, de Groote and Pogodalla [19] state “Abstract Categorial
Grammars . . . should rather be seen as the kernel of a grammatical framework
. . . in which other existing grammatical models may be encoded”.

This thesis is devoted to studying the mathematical properties of some
extensions and restrictions of ACGs. In particular, the aspect of ACGs that
generalizes well-established grammar formalisms is investigated. Through
discussion on the three main issues of this thesis, elimination of deleting op-
erations, lexicalization, and two-dimensional formalisms, it is demonstrated
that ACGs can be thought of as a generalization of existing grammars in
various senses.

Elimination of deleting operations.

Preceding research on several grammar formalisms have shown that delet-
ing operations in a grammar can be eliminated preserving the language. We
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show that a similar result holds for ACGs, which generalizes the results by
preceding research on elimination of deleting operations in some grammar
formalisms.

Lexicalization.

A grammar is called lexicalized if each of its lexical entries that contribute
to deriving an element of the language contains an item that explicitly ap-
pears on the surface of the derived structure. We show that a certain subclass
of ACGs admits lexicalization. As Schabes [47] has shown that every finitely
ambiguous ACG can be lexicalized as a TAG, our lexicalization method con-
verts the ACG encoding a CFG into the one encoding a lexicalized TAG as
a string generator.

Two-dimensional formalisms.

Not a few grammar formalisms, which define languages, have been ex-
tended into two-dimensional formalisms, in which grammars define relations
between two languages. We present some encoding methods for existing
two-dimensional formalisms by two-dimensional ACGs.

Overview of This Thesis

In the next chapter, we give a formal definition of ACGs and see basic math-
ematical properties of ACGs as well as the results on ACGs obtained by
preceding research. In particular, it is shown that if the universal mem-
bership problem or the non-emptiness problem of ACGs is decidable, then
so is the multiplicative exponential fragment of the linear logic, which is in
open, and that non-semilinear languages can be generated by ACGs. Those
results might imply that ACGs have too much powerful generative capacity
and intractable computational complexity for modeling natural language, so
finding an appropriate restriction on ACGs is desired.

Chapter 3 is concerned with non-linear extensions of ACGs. While ACGs
are based on the simply typed linear lambda calculus, admitting non-linear
λ-terms as lexical entries may allow ACGs to describe linguistic phenomena
in a more natural and concise fashion. On the other hand, preceding research
concerning mildly context-sensitive grammars has shown that deleting oper-
ations in grammars can be eliminated preserving their languages. Namely,
Seki et al. [49] have shown that every multiple context-free grammar (MCFG)
has an equivalent LCFRS, which can be thought of as an MCFG that has
no deleting operations, and Fujiyoshi [10] has established the equivalence
between non-duplicating monadic CFTGs and non-deleting non-duplicating
monadic CFTGs. Along this line, we show that the generative capacity of
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the usual ACGs is equivalent to that of the more liberal type of ACGs called
affine ACGs, where vacuous λ-abstraction is allowed. Our conversion from
an affine ACG into an equivalent linear ACG derives the results by Seki et al.
and by Fujiyoshi as corollaries. This demonstrates that not only individual
mildly context-sensitive grammars are encodable by ACGs, but also some
transformations of grammars can be encoded in the ACG formalism.

In Chapter 4, we focus on lexicalized ACGs. A grammar is called lex-
icalized if each of its lexical entries that contribute to deriving an element
of the language contains an item that explicitly appears on the surface of
the derived structure. From the point of lexicalists’ view, which thinks that
linguistic phenomena should be accounted for by the inherent information in
the lexical entries, to be lexicalized is a natural requirement. Schabes [47]
has shown that every finitely ambiguous TAG admits lexicalization. Besides,
because each production of a CFG is encoded as a lexical entry in the ACG
encoding the CFG, a CFG in Greibach normal form can be considered lexi-
calized. While usual categorial grammars are lexicalized by definition, ACGs
are not necessarily lexicalized. We first show that the universal membership
problem for lexicalized ACG is NP-complete. This result contrasts with the
one for general ACGs and suggests that the restriction to lexicalized ACGs
may be preferable from the point of view of computational complexity as well
as of lexicalism. Meanwhile, Salvati has introduced the notion of semilexi-
calized ACGs by relaxing the notion of lexicalized ACGs and shown that the
languages generated by semilexicalized ACGs are in NP. His result suggests
that the generative capacity of semilexicalized ACGs is not very much richer
than that of lexicalized ACGs. The main result of Chapter 4 is lexicaliza-
tion of semilexicalized ACGs. We show that each grammar in one level of
the ACG hierarchy can be converted into an equivalent lexicalized grammar
belonging to the same level if the level is higher than a certain level. Our lex-
icalization, however, generalizes neither lexicalization of TAGs nor Greibach
normalization of CFGs, since the ACGs encoding TAGs or CFGs are located
at a lower level than that level. Nevertheless, the fact that our lexicaliza-
tion method converts ACGs encoding CFGs into lexicalized ACGs of the
form encoding TAGs as string generators has a certain correspondence with
Schabes’s lexicalization method that lexicalizes finitely ambiguous CFGs as
TAGs.

Chapter 5 is devoted to investigating the generative capacity of two-
dimensional ACGs. Lambek grammars are two-dimensional grammars in
the sense that they generate pairs of a sentence and its meaning. Although
the ACG formalism is designed to be easily extended into a two-dimensional
formalism, there is little research on the mathematical properties of two-
dimensional ACGs. In order to evaluate the generative capacity of two-
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dimensional ACGs, we present encoding methods that convert several ex-
isting two-dimensional formalisms, which define relations between two lan-
guages, into two-dimensional ACGs. In particular, a precise characteri-
zation of the class of non-deleting non-duplicating macro tree transduc-
ers [2,6] is given in the ACG hierarchy. Besides, it is shown that synchronous
TAGs [50, 53] are encodable by two-dimensional ACGs. These results show
that the ACG formalism generalizes existing two-dimensional formalisms as
well as one-dimensional formalisms. On the other hand, we show that sev-
eral properties of usual one-dimensional ACGs hold also for two-dimensional
ones. In particular, as Salvati has shown that a part of the hierarchy of
one-dimensional ACGs collapses, we show that the corresponding part of the
hierarchy of two-dimensional ACGs also collapses through encoding deter-
ministic tree-walking transducers [1] by two-dimensional ACGs.

The subject of Chapter 6 is a restricted kind of higher-order matching.
The higher-order matching problem is an important topic in computer sci-
ence. Parsing with ACGs has a close connection with a special form of the
higher-order matching problem called linear interpolation. We show that lin-
ear interpolation is NP-complete. While each variable occurs exactly once in
a linear λ-term, the number of occurrences of constants are not restricted. It
is natural to ask whether the NP-hardness of linear interpolation still holds
when we exclude multiple occurrences of constants from linear λ-terms. We
answer the question in the affirmative.





Chapter 2

Abstract Categorial Grammars

2.1 Definitions and Notations

∅ is the empty set, ε is the empty string, Z is the set of integers, N is the
set of non-negative integers. |X| denotes the cardinality of X if X is a set,
and the length of X if X is a sequence. The sequence consisting of elements
X1, . . . , Xn in this order is denoted by 〈X1, . . . , Xn〉. If no confusion occurs,
in particular if each Xi is not a sequence, we sometimes write X1 . . .Xn for
〈X1, . . . , Xn〉. If ~Y denotes 〈Y1, . . . , Ym〉, X1 . . .Xm

~Y Z1 . . . Zl should be read
as 〈X1, . . . , Xn, Y1, . . . , Ym, Z1, . . . , Zl〉 and so on. X1 . . .Xm is said to be

a subsequence of a sequence ~Y if there are some possibly empty sequences
~Y0, . . . , ~Ym such that ~Y = ~Y0X1

~Y1X2 . . . ~Ym−1Xm
~Ym. For a fixed index set I

and a set represented as S = {Xi | i ∈ I }, we write 〈Xi ∈ S | φ(i) 〉 (or
〈Xi〉φ(i)) for an appropriate sequence of Xi such that φ(i) holds, if the order
of the elements is determined uniquely from the context, or can be arbitrarily
determined. Standard language-theoretic notions like concatenation, Kleene
star (∗), homomorphism etc. are defined as usual.

2.1.1 Lambda-Terms

Types Let A be a finite non-empty set of atomic types. The set T (A ) of
types built on A is defined as the smallest superset of A such that

• if α, β ∈ T (A ), then (α→ β) ∈ T (A ).

For α ∈ T (A ), |α| represents the number of occurrences of atomic types
in α. The set ST +(α) of positive subtypes of a type α, the set ST −(α) of
negative subtypes of a type α, and the set ST (α) of subtypes of a type α are
defined as follows:

7



8 Chapter 2. Abstract Categorial Grammars

• ST +(p) = {p}, ST −(p) = ∅ for p ∈ A .

• ST +((α → β)) = {(α → β)} ∪ ST +(β) ∪ ST −(α), and ST −((α →
β)) = ST −(β) ∪ ST +(α).

• ST (α) = ST +(α) ∪ ST −(α).

Let ord : T (A ) → N be defined as

• ord(p) = 1 for all p ∈ A ,

• ord((α → β)) = max{ord(α) + 1, ord(β)}.

We say that a type α is n-th order if ord(α) ≤ n. We use o, p, q, r, s for atomic
types and early lower case Greek letters α, β, γ, . . . for types unless otherwise
noted. We write α1 → · · · → αn → β for (α1 → (· · · → (αn → β) . . . )) and
if ~α = α1 . . . αn, ~α → β means α1 → · · · → αn → β. αn → β stands for
α→ · · · → α︸ ︷︷ ︸

n-times

→ β. A second-order type α ∈ T (A ) is said to be n-ary if

α = p1 → · · · → pn → q for some pi, q ∈ A . Thus an atomic type is called a
nullary second-order type.

Higher-Order Signatures A higher-order signature Σ is a triple 〈A ,C , τ〉
where A is a finite non-empty set of atomic types, C is a finite set of
constants, and τ is a function from C to T (A ) called a type assignment.
We say that a higher-order signature Σ is n-th order if ord(Σ) ≤ n where
ord(Σ) = max{ ord(τ(a)) | a ∈ C }. When we write Σ, Σ′, Σi etc. to de-
note higher-order signatures, we assume Σ = 〈A ,C , τ〉, Σ′ = 〈A ′,C ′, τ ′〉,
Σi = 〈Ai,Ci, τi〉 and so forth.

Lambda Terms Let X be a countably infinite set of variables. The set
ΛK(Σ) of λ-terms (terms for short) built upon Σ and the type τ̂ (M) of a
term M ∈ ΛK(Σ) are defined inductively as follows:

• For every a ∈ C , a ∈ ΛK(Σ) and τ̂(a) = τ(a).

• For every x ∈ X and α ∈ T (A ), xα ∈ ΛK(Σ) and τ̂ (xα) = α.

• For M,N ∈ ΛK(Σ), if τ̂ (M) = (α → β), τ̂ (N) = α, then (MN) ∈
ΛK(Σ) and τ̂((MN)) = β.

• For x ∈ X , α ∈ T (A ) and M ∈ ΛK(Σ), (λxα.M) ∈ ΛK(Σ) and
τ̂((λxα.M)) = (α→ τ̂ (M)).
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We assume that every occurrence of a variable x in one term has the same
type; e.g., λxp.xp→qxp is disallowed. Constants and variables are called
atomic terms, terms of the form (MN) are called application terms, terms
of the form (λxα.M) are called abstraction terms. For convenience, we sim-
ply write τ instead of τ̂ and often omit the superscript on a variable if its
type is clear from the context. We write M1 . . .Mn for ((. . . (M1M2) . . . )Mn),
λx1 . . . xn.M for (λx1.(λx2. . . . (λxn.M) . . . )), and so on. If ~x = x1 . . . xn and
~M = M1 . . .Mm, then λ~x.M0

~M represents the term λx1 . . . xn.M0M1 . . .Mm.
The notions of free variables, closed terms, β-normal form, βη-normal form,
η-long form, are defined as usual (see a standard text book, e.g. [20]). A
term M is a combinator iff M is closed and M contains no constants. The
head of M is the atomic term x if M = λ~x.x ~M . In a term xM1 . . .Mm, each
occurrence of Mi is said an argument of the head occurrence of x, and con-
versely the functor of the occurrence of Mi is the head occurrence of x. We
often say that a term M is k-th order (k-ary) if τ(M) is k-th order (k-ary).

A capture-avoiding substitution of a term M for a free variable x is de-
noted by [M/x]. When ~x = x1 . . . xn and ~M = M1 . . .Mn, [ ~M/~x] means
the simultaneous substitution [M1/x1, . . . ,Mn/xn]. [Mi/xi]φ(i) means the si-
multaneous substitution [〈Mi〉φ(i)/〈xi〉φ(i)]. For a substitution σ, Nσ denotes
the term obtained from N by applying the substitution and λxyz.LMNσ
means λxyz.((LMN)σ). A substitution that may capture free variables
is denoted by [x := M ]. Thus, λx.y[x/y] = λx.x, (λx.y)[x/y] = λz.x,
(λx.y)[y := x] = λx.x, and so on.

As usual, let �β, =β, =βη, ≡ denote β-reduction, β-equality, βη-equality,
and α-equality respectively. A long normal term means a η-long β-normal
term. The βη-equality is often simply written by =. |M |β, |M |βη and Fv(M)
respectively represent the β-normal form, βη-normal form, and the set of
free variables of M . We use upper case italic letters M,N, P, . . . for terms,
late lower case italic letters x, y, z, . . . for variables, and sanserif a,A, . . . for
constants in principle.

The size of a term is defined by

size(a) = size(x) = 1,

size(MN) = size(M) + size(N),

size(λx.M) = size(M) + 1.

For a term M ∈ Λ(Σ) and a ⊆ C , #a(M) denotes the number of occur-
rences of the constant a in M . Moreover, for C ′ ⊆ C , #C ′(M) denotes the
total number of occurrences of the constants in C ′. This notation is defined
in the same way for strings.
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A term is said to be linear if every λ-abstraction binds exactly one oc-
currence of a variable and no free variable of it occurs more than once.

Convention 2.1. Since this thesis mainly concerns linear λ-terms, we denote
the set of linear λ-terms on Σ by Λ(Σ) and moreover we omit the modifier
“linear”, so if we say simply a term, it means a linear λ-term hereafter.

Strings, Trees and Lambda-Terms A second-order signature Σ is called
string signature if A = {o} and τ(a) = o → o for every a ∈ C . We write
str for o→ o. For an (unranked) alphabet V , ΣV denotes the corresponding
string signature such that CV = V . For a string a1 . . . an ∈ V ∗, we define the
corresponding closed linear term as

/a1 . . . an/ ≡ λzoa1(a2(. . . (anz) . . . )).

The concatenation is represented by the combinator B ≡ λxstrystrzo.x(yz).
For w1,w2 ∈ V ∗, we have

B/w1//w2/ = /w1w2/.

For notational convenience, we write M+N instead of BMN for two terms of
type str . Moreover, by the associativity of +, i.e., (L+M)+N = L+(M+N),
we can omit parentheses as L+M+N if βη-equivalent terms can be identified.

A ranked alphabet is a pair 〈F, ρ〉 where F is an (unranked) alphabet and
ρ is a function from F to the non-negative integers. F (n) denotes the set
{ f ∈ F | ρ(f) = n }. The set T(〈F, ρ〉) of trees over 〈F, ρ〉 is the smallest set
such that

• if f ∈ F (n) and M1, . . . ,Mn ∈ T(〈F, ρ〉), then (fM1 . . .Mn) ∈ T(〈F, ρ〉).

The outer most pair of parentheses of a tree is usually omitted. For a possibly
infinite set X of variables, by T(〈F, ρ〉 ∪X ) we denote the set of trees that
may contain variables as symbols of rank 0. A second-order signature Σ is
called a tree signature if A = {o}. For a ranked alphabet 〈F, ρ〉, we define
the corresponding tree signature as Σ〈F,ρ〉 = 〈{o}, F, { f 7→ oρ(f) → o | f ∈
F }〉. We often identify a ranked alphabet 〈F, ρ〉 with the corresponding
tree signature Σ〈F,ρ〉. Then T(Σ) is the subset of Λ(Σ) whose elements are
variable-free and of atomic types. The yield string yield(M) of a tree M is
defined as

yield(f) = f if f ∈ F (0),

yield(fM1 . . .Mn) = yield(M1) . . .yield(Mn) if f ∈ F (n) with n ≥ 1.
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2.1.2 Abstract Categorial Grammars

Definition 2.2 (Lexicon). For two sets of atomic types A0 and A1, a
type substitution σ is a mapping from A0 to T (A1), which can be extended
homomorphically as

σ(α → β) = σ(α) → σ(β).

For two higher-order signatures Σ0 and Σ1, a term substitution θ is a mapping
from C0 to Λ(Σ1) such that θ(a) is closed for all a ∈ C0. For two higher-order
signatures Σ0 and Σ1, we say that a type substitution σ : A0 → T (A1) and
a term substitution θ : C0 → Λ(Σ1) are compatible iff σ(τ0(a)) = τ1(θ(a))
holds for all a ∈ C0. A lexicon from Σ0 to Σ1 is a compatible pair of a type
substitution and a term substitution. On a lexicon L = 〈σ, θ〉, the function

L̂ from Λ(Σ0) to Λ(Σ1) is uniquely determined as follows:

L̂ (xα) = xσ(α) for α ∈ T (A0),

L̂ (a) = θ(a) for a ∈ C0,

L̂ (λxα.M) = λxσ(α).L̂ (M) for λxα.M ∈ Λ(Σ0),

L̂ (MN) = L̂ (M)L̂ (N) for MN ∈ Λ(Σ0).

Indeed, L̂ (M) always a well-typed λ-term if so is M ; if M has type

α, then L̂ (M) has type σ(α). Hereafter we simply write L for σ or L̂

depending on the context. A lexicon L = 〈σ, θ〉 is n-th order if ord(L ) =
max{ ord(σ(p)) | p ∈ A0 } ≤ n. For two lexicons L1 = 〈σ1, θ1〉 : Σ0 → Σ1

and L2 = 〈σ2, θ2〉 : Σ1 → Σ2, it is easily seen that σ2 ◦ σ1 and θ2 ◦ θ1
are also compatible. Thus, the composite lexicon L2 ◦ L1 : Σ0 → Σ2 can
be defined as L2 = 〈σ2 ◦ σ1, θ2 ◦ θ1〉, where it holds that ord(L2 ◦ L1) ≤
ord(L1) + ord(L2) − 1.

Definition 2.3 (de Groote [15]). An abstract categorial grammar (ACG)
is a quadruple G = 〈Σ0,Σ1,L , s〉, where

• Σ0 is a higher-order signature, called the abstract vocabulary,

• Σ1 is a higher-order signature, called the object vocabulary,

• L is a lexicon from Σ0 to Σ1,

• s ∈ A0 is called the distinguished type.

When we use the modifier abstract or object, it specifies the vocabulary
that a given type or term belongs to. Thus, we speak of abstract atomic types,
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object atomic types, abstract constants, object constants, etc. We sometimes
call the triple 〈a, τ0(a),L (a)〉 for a ∈ C0 a lexical entry, and specify an ACG
by giving the set of lexical entries and the distinguished type.

Definition 2.4. An ACG G = 〈Σ0,Σ1,L , s〉 generates two languages, the
abstract language A(G ) and the object language O(G ), defined as follows:

A(G ) = {M ∈ Λ(Σ0) |M is a closed βη-normal term of type s }

O(G ) = { |L (M)|βη |M ∈ A(G ) }

The abstract language can be thought as a set of abstract grammatical
structures, and the object language is regarded as the set of concrete forms
obtained from these abstract structures and the lexicon. Thus, we simply
say the language generated by an ACG for its object language. The term
abstract categorial languages (ACLs) means the object languages of ACGs.
Two ACGs are equivalent iff their object languages coincide. For conciseness
we write M ∈ A(G ) (P ∈ O(G )) instead of |M |βη ∈ A(G ) (|P |βη ∈ O(G ))
even if M (P ) is not βη-normal.

A string ACG is an ACG whose object vocabulary is a string signature
and whose distinguished type is mapped to the type str . A tree ACG is an
ACG whose object vocabulary is a tree signature and whose distinguished
type is mapped to the type o. By Gstring and Gtree, we denote the classes of
string ACGs and tree ACGs, respectively.

Let us denote by G(m,n) the subclass of ACGs G = 〈Σ0,Σ1,L , s〉 such
that ord(Σ0) ≤ m and ord(L ) ≤ n. An ACG in G(m,n) is also called an
m-th order ACG. For a second-order ACG, its lexicon is said to be semi-
relabeling if it is first-order and it maps each abstract constant to an object
constant or the identity λzo.z. A relabeling lexicon is a semi-relabeling lexicon
which maps every abstract constant to an object constant. G(2, 1(sr)) and
G(2, 1(r)) denote the class of second-order ACGs whose lexicons are semi-
relabeling and relabeling, respectively. A second-order lexicon L is said to be
monadic if for each abstract atomic type p ∈ A0, L (p) is either an atomic or
a unary type. G(2, 2(mon)) is the class of second-order ACGs whose lexicons
are monadic.

We specify a subclass of ACGs by combining these notations; for instance,
Gtree(2, 1(r)) denotes the class of tree ACGs whose abstract vocabulary is
second-order and lexicon is relabeling.

Example 2.5. Let G1 = 〈Σ0,Σ1,L1, s〉 ∈ Gstring consist of the following
lexical entries:
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x ∈ C0 τ0(x) L1(x)

M n /man/
W n /woman/
L np2 → s λyx.x+ /loves/+ y
A n → (np → s) → s λyw.w(/a/+ y)
E n → (np → s) → s λxw.w(/every/+ x)

where L (s) = L (np) = L (n) = str .
Moreover, let G2 = 〈Σ0,Σ2,L2, s〉 consist of the following lexical entries:1

x ∈ C0 τ0(x) L2(x)

M n λz.man z
W n λz.woman z
L np2 → s λyx.love y x
A n → (np → s) → s λw1w2.∃y((w1y)∧(w2y))
E n → (np → s) → s λw1w2.∀x((w1x)→(w2x))

where L (s) = t, L (np) = e, L (n) = e→ t. Let

M = AW(λxnp .EM(λynp.Lxy)),

N = EM(λynp.AW(λxnp .Lxy)).

We have

L1(M) = L1(N) = /every man loves a woman/

L2(M) = ∃y((woman y)∧(∀x((man x)→(love x y))))

L2(N) = ∀x((man x)→(∃y((woman y)∧(love x y)))).

This way the above two ACGs give an explanation of the ambiguity of the
scopes of the quantifiers.

2.2 Basic Properties of Abstract Categorial

Grammars

2.2.1 Hierarchy of Second-Order ACGs

De Groote and Pogodalla [19] have shown that a variety of context-free for-
malisms can be encoded by second-order ACGs in a straightforward way.

1L2(A) and L2(E) are not represented as simply typed linear λ-terms here. Neverthe-
less, by introducing constants Some and Every of type (e → t)2 → t, we can represent
them by linear λ-terms as L2(A) = λw1w2.Somew1 w2 and L2(E) = λw1w2.Every w1 w2.
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Namely, string languages generated by context-free grammars (CFGs), lin-
ear context-free grammars (LCFTGs), linear context-free rewriting systems
(LCFRSs) are all generated by ACGs belonging to Gstring(2, 2), Gstring(2, 3),
Gstring(2, 4) respectively. Here, we let the term linear CFTGs mean non-
duplicating non-deleting CFTGs following the terminology by de Groote and
Pogodalla, although usually “linearity” means just non-duplication. Their
encodings are straightforward in the sense that the derivation structures in
the original grammar are preserved in the resultant ACG. For the converse,
it is not difficult to see that ACGs in Gstring(2, 2) can generate only context-
free languages. The most remarkable result on the hierarchy of second-order
string ACGs is given by Salvati [45]. The hierarchy collapses from fourth-
order.

Theorem 2.6 (Salvati [45]). Every second-order string ACG in Gstring(2, n)
for n ≥ 1 has an equivalent LCFRS, and thus an equivalent ACG belonging
to Gstring(2, 4).

It is conjectured that the languages generated by ACGs in Gstring(2, 3)
are also generated by LCFTGs. If that is the case, these results give us a
precise correspondence between Gstring(2, n) and context-free formalisms for
each n.

Let us turn our attention to the generative capacity of second-order tree
ACGs. The equivalence between Gtree(2, 1) (Gtree(2, 1(r))) and regular tree
grammars is easily seen. As discussed by de Groote and Pogodalla [19],
linear context-free tree languages can be generated by ACGs in Gtree(2, 2)
(see also [27] for a complete proof). Moreover it is easy to see that the
converse of the relation also holds. De Groote [18] has shown that tree-
adjoining grammars are also simulated by ACGs in Gtree(2, 2(mon)). The
converse relation also holds with respect to the string generating capacity.

Those correspondences are summarized in Table 2.1.

Definition 2.7 (Linear Context-Free Tree Grammar). A context-free
tree grammar is a quadruple G = 〈〈V, ρ〉, T, R, S〉 where 〈V, ρ〉 is a ranked
alphabet, elements of T ( V are called terminal symbols, elements of V − T
are called nonterminal symbols, S ∈ V −T is the start symbol with ρ(S) = 0,
and P is a finite set of productions of the form

A[x1, . . . , xρ(A)] → N

where A ∈ V − T and N ∈ T(〈V, ρ〉 ∪ {x1, . . . , xρ(A)}). A CFTG is non-
duplicating iff for every production of the above form, xi appears inN at most
once for each x1, . . . , xρ(A). A CFTG is non-deleting iff for every production
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Table 2.1: Hierarchy of second-order ACGs

Finite Languages = G(1, m)

String Languages
Context-Free Grammars = Gstring(2, 2)

Linear Context Free Tree Grammars ⊆ Gstring(2, 3)
Linear Context Free Rewriting Systems = Gstring(2, n) for n ≥ 4

Tree Languages
Regular Tree Grammars = Gtree(2, 1) (Gtree(2, 1(r)))

Linear Context-Free Tree Grammars = Gtree(2, 2)
Tree Adjoining Grammars ⊆ Gtree(2, 2(mon))

rule of the above form, xi appears in N at least once for each x1, . . . , xρ(A). A
CFTG is called linear iff it is non-duplicating and non-deleting at the same
time.

We write
M ⇒M ′

iff there are A ∈ V − T , M0 ∈ T(〈V, ρ〉 ∪ {z}) (z occurs exactly one in
M0), M1, . . . ,Mρ(A) ∈ T(〈V, ρ〉), and A[x1, . . . , xρ(A)] → N ∈ R such that
M = M0[AM1 . . .Mρ(A)/z] and M ′ = M0[N [Mi/xi]1≤i≤ρ(A)/z]. The (tree)
language generated by G is defined by

L(G) = {M ∈ T(〈T, ρ〉) | S
∗
⇒M }

where
∗
⇒ is the reflexive transitive closure of ⇒.

De Groote and Pogodalla [19] encode an LCFTG G = 〈〈V, ρ〉, T, R, S〉 as
an ACG G G = 〈Σ0,Σ〈T,ρ〉,L , S〉 as follows. The object vocabulary is the
tree signature Σ〈T,ρ〉, and the set A0 of abstract atomic types is the set V −T
of nonterminals. An abstract atomic type A ∈ A0 = V − T is mapped to
oρ(A) → o by the lexicon L . For each production rule r : A[x1, . . . , xρ(A)] →
N , we put the following lexical entry into G G:

〈Ar, B1 → · · · → Bk → A, λy1 . . . ykx1 . . . xρ(A).N
′〉

where B1, . . . , Bk is a sequence of nonterminals occurring in N (if the same
nonterminal B appears in N m-times, B occurs in the sequence m-times)
and N ′ is obtained from N by replacing each Bi with yi.
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Example 2.8. Let an LCFTG G consist of the following production rules:

S → Aabc,

A[x1, x2, x3] → A(fax1)(fbx2)(fcx3),

A[x1, x2, x3] → gx1x2x3,

where the ranks of S, A, a, b, c, f, g, are 0, 3, 0, 0, 0, 2, 3, respectively.
S and A are nonterminals and a, b, c, f, g are terminals. The ACG G G that
encodes G consists of the following lexical entries:

x ∈ C0 τ0(x) L (x)

A1 A→ S λyo3→o
A .yAabc

A2 A→ A λyo3→o
A xo

1x
o
2x

o
3.yA(fax1)(fbx2)(fcx3)

A3 A λxo
1x

o
2x

o
3.gx1x2x3

Definition 2.9 (Linear Context-Free Rewriting System). A context-
free rewriting system (CFRS) is a quadruple G = 〈〈V, ρ〉, T, R, S〉 where
〈V, ρ〉 is a ranked alphabet called the set of nonterminals, T is an (unranked)
alphabet disjoint from V called the set of terminal symbols, S ∈ V is the
start symbol with ρ(S) = 1, and R is a finite set of productions of the form

A→ f(B1, . . . , Bm)

where A,B1, . . . , Bm ∈ V and f is a function from (T ∗)ρ(B1) ×· · ·× (T ∗)ρ(Bm)

to (T ∗)ρ(A) such that

f(〈x1,1, . . . , x1,ρ(B1)〉, . . . , 〈xm,1, . . . , xm,ρ(Bm)〉) = 〈w1, . . . ,wρ(A)〉

with wi ∈ (T ∪{x1,1, . . . , xm,ρ(Bm)})
∗. For f as above, fi for i ∈ {1, . . . , ρ(A)}

means the i-th project of f , i.e., fi(~x1, . . . , ~xm) = wi for ~xi = 〈xi,1, . . . , xi,ρ(i)〉.
A CFRS is linear iff for every function appearing in a production rule as the
above form, xi,j appears in f(~x1, . . . , ~xm) exactly once for each i ∈ {1, . . . , m}
and j ∈ {1, . . . , ρ(Bi)}.

The set L(G,A) ⊆ (T ∗)ρ(A) for A ∈ V is defined as follows:

• If A → f() ∈ R (f is a constant function and f() ∈ (T ∗)ρ(A)), then
f() ∈ L(G,A).

• if A→ f(B1, . . . , Bm) ∈ R, and ~wi ∈ L(G,Bi) for i ∈ {1, . . . , m}, then
f(~w1, . . . , ~wm) ∈ L(G,A).

The language generated by G is defined as

L(G) = {w ∈ T ∗ | 〈w〉 ∈ L(G, S) }.
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De Groote and Pogodalla [19] encode an LCFRS G = 〈〈V, ρ〉, T, R, S〉
as an ACG G G = 〈Σ0,ΣT ,L , s′〉 as follows. The object vocabulary is the
string signature ΣT , and the set A0 of abstract atomic types is V ∪{s′} with
s′ 6∈ V . An abstract atomic type A ∈ V is mapped to (str ρ(A) → str) → str
and the distinguished type s′ is mapped to str by the lexicon L . For each
production rule r : A → f(B1, . . . , Bk), we put a lexical entry representing
the rule:

〈cr, B1 → · · · → Bk → A, λy1 . . . ykz.y1(λ~x1. . . . yk(λ~xk.zM1 . . .Mρ(A)) . . . )〉

where

Mi = /fi(~x1, . . . , ~xk)/.

Moreover, we put the following special lexical entry:

〈S, S → s′, λy(str→str)→str .y(λ~xstr .x)〉.

Then, whenever 〈w1, . . . ,wρ(A)〉 ∈ L(G,A), we can find an abstract term

M ∈ Λ(Σ0) of type A such that L (A) = λz(strρ(A)→str)→str .z/w1/ . . . /wρ(A)/.

Example 2.10. Let an LCFRS G consist of the following production rules:

S → f(A) with f(〈x1, x2, x3〉) = 〈x1x2x3〉

A→ g(A) with g(〈x1, x2, x3〉) = 〈ax1, bx2, cx3〉

A→ h() with h() = 〈a, b, c〉

The ACG that encodes G consists of the following lexical entries:

x ∈ C0 τ0(x) L (x)

F A→ S λyAz.yA(λx1x2x3.z(x1 + x2 + x3))
G A→ A λyAz.yA(λx1x2x3.z(a + x1)(b + x2)(c + x3))
H A λz.zabc

S S → s′ λyS.yS(λx.x)

A more general result on the generative capacity of second-order ACG is
given by Salvati.

Theorem 2.11 (Salvati [43]). Every second-order ACG generates a PTIME
language.
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2.2.2 General Properties of ACGs

There are some results on the mathematical properties of ACGs which are
themselves, or are corollaries to, already known facts. These properties
demonstrate the rich expressive power of ACGs. However, some fundamental
mathematical properties of ACGs are not yet to be revealed. For instance,
no recursively enumerable language has been found that cannot be generated
by any ACG.

Lemma 2.12. Let a type substitution σ : {o} → T ({o}) be defined as σ(o) =
str. Then, for any α ∈ T ({o}), there is a linear combinator Zσ(α) of type
σ(α).

Proof. By induction on α, we define a linear combinator Zσ(α) of type σ(α).
Let σ(α) = β1 → · · · → βm → str and βi = βi,1 → · · · → βi,ki

→ str . Define

Zσ(α) = λyβ1

1 . . . yβm

m zo.R1(R2(. . . (Rmz) . . . ))

where Ri = yβi

i Z
βi,1 . . . Zβi,ki .

Hereafter by Zβ we denote such linear combinator of type β provided
that β has the above form.

Definition 2.13. The universal membership problem is the problem of de-
termining whether P ∈ O(G ). The non-emptiness problem for ACGs is the
problem of determining whether O(G ) 6= ∅.

Though these problems are fundamental, they are still open. We have
only partial answers to them.

Proposition 2.14. The universal membership problem for ACGs is at least
as hard as the non-emptiness problem for ACGs.

Proof. We present a reduction from the non-emptiness problem to the uni-
versal membership problem. Let an ACG G = 〈Σ0,Σ1,L , s〉 be given as an
instance of the non-emptiness problem. We define G ′ = 〈Σ0,Σ

′
1,L

′, s〉 as

Σ′
1 = 〈{o},∅,∅〉,

L
′(p) = str for all p ∈ A0,

L
′(c) = ZL ′(τ0(c)) for all c ∈ C0,

where Zα is as in Lemma 2.12. Then, L ′(M) �β λzo.z for every M ∈
A(G ′) = A(G ). Therefore, O(G ) 6= ∅ iff λzo.z ∈ O(G ′).

The following proposition is an easy corollary to a result obtained by
de Groote et al. [17]
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Proposition 2.15. The emptiness problem for ACGs is decidable iff the
multiplicative exponential linear logic (MELL) is decidable.

Proof. Let G = 〈Σ0,Σ1,L , s〉 be an ACG, where Σ0 = 〈A0,C0, τ0〉, C0 =
{c1, . . . , cn}, and τ0(ci) = Ai for 1 ≤ i ≤ n. Then O(G ) 6= ∅ iff A(G ) 6= ∅
iff !A1, . . . , !An ⇒ s is provable in MELL. This proves the “if” direction.

The “only if” direction can be proved as follows. De Groote et al. [17]
show that the decidability of MELL is equivalent to the decidability of a
fragment of it called IMELL(

0
. Formulas of IMELL(

0
are of the form !A

or A, where A is a pure implicative formula, and the right-hand side of a
sequent of IMELL(

0
must be a pure implicative formula. Given a sequent

S : !A1, . . . , !An, B1, . . . , Bm ⇒ C

of IMELL(

0
where each Bi is pure implicative, let an ACG G S = 〈Σ0,Σ0,

Lid, s〉 be such that Σ0 = 〈AS ∪{s},C0, τ0〉, AS is the set of atomic formulas
in the sequent S, s 6∈ AS , C0 = {ci | 1 ≤ i ≤ n} ∪ {b}, τ0(ci) = Ai,
τ0(b) = (B1 → · · · → Bm → C) → s, and Lid is the identity. Then
S is provable in IMELL(

0
iff S is provable in MELL iff A(G S) 6= ∅ iff

O(G S) 6= ∅.

Restricting to string ACGs does not change the situation. We can find a
string ACG G ′ = 〈Σ0,Σ1,L

′, s〉 such that A(G ′) = A(G S). For instance, let
Σ1 = 〈{o},∅,∅〉, L ′(p) = str for all p ∈ AS ∪ {s} and let L ′(c) = ZL (τ0(c))

for all c ∈ C0.
The decidability of MELL is still open but it is known to be at least

as hard as Petri-net reachability, which is at least EXPSPACE-hard [31].
Indeed, we can represent Petri-net reachability sets by ACGs directly using
a reduction from vector addition systems (VASs), which are equivalent to
Petri-nets.

Definition 2.16. An m-dimensional vector addition system (m-VAS) V is
a pair 〈∆, ~s〉, where ∆ is a finite subset of Zm and ~s ∈ Nm. We call Nm the

set of configurations. ⇒~d
for ~d ∈ Zm is a binary relation on Nm such that

for ~a,~b ∈ Nm, ~a ⇒~d
~b iff ~b = ~a + ~d. The union of ⇒~d

for ~d ∈ ∆ is denoted

by ⇒∆. A configuration ~b is reachable iff ~s⇒∗
∆
~b where ⇒∗

∆ is the reflexive,
transitive closure of ⇒∆. The reachability set R(V ) ⊆ Nm of an m-VAS V

is the set of reachable configurations.

Definition 2.17. For an alphabet V , suppose that its elements are ordered
as a1, . . . , an. The Parikh vector of a string w ∈ V ∗ is defined as

#(w) = 〈#a1(w), . . . ,#an(w)〉 ∈ Nn.
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and the Parikh image of a language L ⊆ V ∗ is defined as

#(L) = {#(w) | w ∈ L} ⊆ Nn.

A set of vectors of natural numbers Γ ⊆ Nm is linear iff there are
~a1, . . . ,~an,~b ∈ Nm such that Γ = {~b +

∑n
j=1 kj~aj | kj ∈ N}. Γ ⊆ Nm is

semilinear iff there are linear sets Γ1, . . . ,Γn ⊆ Nm such that Γ =
⋃n

i=1 Γi.
A language L is linear (semilinear) iff the Parikh image of L is linear (semi-
linear).

It is known that there is a VAS whose reachability set is not semilin-
ear [21]. The notion of Parikh vector can be applied to λ-terms on a higher-
order signature Σ; the Parikh vector of M is defined as #(M) = 〈#ai

(M) |
ai ∈ C 〉 ∈ N|C |. Then the notions of Parikh image and the semilinearity of a
set of terms are defined in the obvious way.

Proposition 2.18. For every reachability set R(V ), there is an ACG G V ∈
Gstring(3, 2) such that R(V ) = #(O(G V )).

Proof. Given an m-VAS V = 〈∆, ~s〉, we define an ACG G V = 〈Σ0,ΣV ,L , q〉
as follows. The set A0 of abstract atomic types is

A0 = { p1, . . . , pm, q }.

Let a function ρ map ~d = 〈d1, . . . , dm〉 ∈ Zm to ρ(~d) ∈ T (A0) as

ρ(~d) = (p
ν(d1)
1 → · · · → pν(dm)

m → q) → p
π(d1)
1 → · · · → pπ(dm)

m → q

where ν(di) =

{
0 if di ≥ 0

−di otherwise
, π(di) =

{
0 if di ≤ 0

di otherwise

The set of abstract constants and the type assignment on them are defined
as

C0 = {ai | 1 ≤ i ≤ m} ∪ {b~d
| ~d ∈ ∆} ∪ {c},

τ0(ai) = pi, τ0(b~d) = ρ(~d), τ0(c) = ps1
1 → · · · → psm

m → q,

where ~s = 〈s1, . . . , sm〉. The object vocabulary is the string signature ΣV for
the alphabet

V = { e1, . . . , em }.

The lexicon L is defined as

L (pi) = L (q) = str ,

L (ai) = ei, L (b~d
) = ZL (ρ(~d)), L (c) = ZL (τ0(c)).
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We show that ~a ∈ R(V ) iff there is M ∈ A(G V ) such that #(L (M)) = ~a.
First we show the “only if” part by induction on n where n is such that

~s⇒n
∆ ~a. For n = 0, i.e., ~a = ~s, let

M ≡ cas1
1 . . . asm

m ∈ A(G V ).

Suppose that

~s⇒∗
∆
~b = 〈b1, . . . , bm〉 ⇒~d

~a = 〈a1, . . . , am〉

for some ~d = 〈d1, . . . , dm〉 ∈ ∆. By the induction hypothesis, we have N ∈

A(G V ) such that #(L (N)) = ~b. Since ai = bi+di ≥ 0, we have bi ≥ ν(di) for
every i. In other words, N contains at least ν(di) occurrences of the constant
ai for every i. Let N ′ be obtained from N by replacing ν(di) occurrences of
the constant ai with fresh distinct variables xi,1, . . . , xi,ν(di) for each i, i.e.,

N ≡ N ′[a1/x1,1, . . . , a1/x1,ν(d1), . . . , am/xm,1, . . . , am/xm,ν(dm)]

and N ′ contains bi − ν(di) occurrences of ai for each i. Let

M ≡ b~d
(λ~x.N ′)a

π(d1)
1 . . . aπ(dm)

m ∈ A(G )

where ~x = 〈x1,1, . . . , x1,ν(d1), . . . , xm,1, . . . , xm,ν(dm)〉. Since M contains ai =
bi − ν(di) + π(di) = bi + di occurrences of ai, we have #(L (M)) = ~a.

Let B = { b~d
∈ C0 | ~d ∈ ∆ }. The “if” direction is shown by induction

on #B(M) for M ∈ A(G V ). M must be in the form of either

cas1
1 . . . asm

m , or (2.1)

b~d
Na

π(d1)
1 . . . aπ(dm)

m for some ~d ∈ ∆ and N ∈ Λ(Σ0). (2.2)

M has the form (2.1) iff #Cb
(M) = 0. In this case, clearly #(L (M)) = ~s is

reachable. If #B(M) ≥ 1, M has the form (2.2). Let ~d = 〈d1, . . . , dm〉. By

the type ρ(~d) of b~d
,

τ0(N) = p
ν(d1)
1 → · · · → pν(dm)

m → q.

Let
N ′ ≡ Na

ν(d1)
1 . . . aν(dm)

m

By applying the induction hypothesis to N ′ ∈ A(G V ), we get that #(L (N ′))
is reachable. Since #ai

(M) = #ai
(N ′) − ν(di) + π(di) = #ai

(N ′) + di, we
have

~s⇒∗
∆ #(L (N ′)) ⇒~d

#(L (M)).

#(L (M)) is a reachable configuration.
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Corollary 2.19. There is an ACG in G(3, 1) whose language is not semi-
linear.

Proof. We redefine G V = 〈Σ0,Σ1,L , q〉 in the proof of Proposition 2.18 as
G ′ = 〈Σ0,Σ0,Lid, q〉, where Lid is the identity. Since #(O(G V )) can be
obtained from #(A(G V )) = #(O(G ′)) by a projection, and semilinearity is
preserved under projections, the non-semilinearity of the former implies the
non-semilinearity of the latter.

In contrast, the following result is easily seen.

Proposition 2.20. Every second-order ACG generates a semilinear lan-
guage.

Proof. First we show that if an ACG G is second-order, then #(A(G )) is
semilinear. For the second-order abstract vocabulary Σ0 of G , let us define
a CFG GΣ0 so that the set of nonterminal symbol is A0, the set of terminal
symbols is C0, the start symbol is the distinguished type s of G , and the set
of productions is

{ q → Ap1 . . . pm | A ∈ C0, τ0(A) = p1 → · · · → pm → q }.

Clearly #(A(G )) = #(L(GΣ0)), where L(GΣ0) denotes the language gen-
erated by GΣ0. Since every context-free language is semilinear, so is the
abstract language of every second-order ACG.

Since the lexicon L induces a linear translation which maps #(M) to
#(L (M)) for M ∈ Λ(Σ0) and semilinearity is preserved under linear trans-
lations, #(O(G )) is also semilinear.

Additionally, recent study by Kanazawa [26] shows that string ACLs form
a substitution-closed full abstract family of languages in the sense of Gins-
burg and Greibach [11]. Let L be a class of string languages. We say that
L is a full AFL (full abstract family of languages) if L is closed under union,
concatenation, Kleene star, homomorphism, inverse homomorphism, and in-
tersection with regular sets. L is closed under substitution if, for every L ∈ L
over an alphabet V1 and every substitution f from V1 to P(V ∗

2 ) such that
f(a) ∈ L for all a ∈ V1, we have f̂(L) ∈ L, where P(V ∗

2 ) denotes the power
set of V ∗

2 and f̂ is the extension of f such that f̂(ε) = {ε}, f̂(wa) = f̂(w)f̂(a)
for w ∈ V ∗

1 and a ∈ V1, f̂(L) =
⋃

w∈L f̂(w).

Theorem 2.21 (Kanazawa [26]). The class of string languages generated
by ACGs in G(m,n) is a substitution-closed full AFL for all m,n ≥ 2.



Chapter 3

Non-Linear Extensions of
Abstract Categorial Grammars

The theorems presented in Section 3.4 has been published in [60].

3.1 Introduction

The ACG formalism is based on simply typed linear lambda calculus in two
senses,

(i) lexical entries of the grammar are all linear λ-terms,

(ii) grammatical combinations of them, i.e., elements of the abstract lan-
guage, are also represented by linear λ-terms.

This accordance is, however, not mandatory. While the linearity constraint
on the abstract language is thought to be reasonable, admitting non-linear
λ-terms as lexical entries may allow ACGs to describe linguistic phenomena
in a more natural and concise fashion.

The ACG G2 in Example 2.5 can be improved by allowing non-linear
terms. Let G ′

2 have the following lexical entries:

x ∈ C0 τ0(x) L ′
2(x)

M n λx.man x
W n λx.woman x
J np John
R np → s λx.run x
L np2 → s λx1x2.love x2 x1

A n → (np → s) → s λy1y2.∃(λx.∧(y1x)(y2x))
E n → (np → s) → s λy1y2.∀(λx.→(y1x)(y2x))

23
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where L ′
2(s) = t, L ′

2(np) = e, L ′
2(n) = e→ t, and ∃, ∀, ∧, → are all object

constants with τ ′2(∃) = τ ′2(∀) = (e → t) → t and τ ′2(∧) = τ ′2(→) = t2 → t.
The meanings of quantifiers A and E are represented by non-linear λ-terms
which have multiple occurrences of bound variables,

Moreover, even vacuous λ-abstraction is useful for more flexible repre-
sentations. Let the pair of two λ-terms M1 and M2 be represented by
PairM1M2 = λv.vM1M2 (Pairequivλu1u2v.vu1u2). One can get the i-th pro-
jection of a given pair of λ-terms by the non-linear λ-term πi ≡ λw.w(λu1u2.ui)
as

πi(λv.vM1M2) �β (λu1u2.ui)M1M2 →β Mi.

For G1 consisting of the following lexical entries,

x ∈ C0 τ0(x) L1(x)

M n /man/
W n /woman/
J np /John/
R np → s λx.x + /runs/
L np2 → s λx1x2.x2 + /loves/+ x1

A n → (np → s) → s λzw.w(/a/+ z)
E n → (np → s) → s λzw.w(/every/+ z)

suppose that the word “every” is replaced with “all”. Though the meanings
of these two words are similar,

* all man runs

is not a correct sentence. The correct sentence is

all men run.

A modification G ′
1 is given as follows:

x ∈ C0 τ0(x) L ′
1(x)

M n P/man//men/
W n P/woman//women/
J np λy.y/John/π1

R np → s λx.x(λuv.u+ v(P/runs//run/))
L np2 → s λx1x2.x2(λuv.u+ v(P/loves//love/)) + x1(λuv.u)
A n → (np → s) → s λzw.w(λy.y(/a/+ π1z)π1)
E n → (np → s) → s λzw.w(λy.y(/all/+ π2z)π2)

where P = λustr
1 u

str
2 v

str2→str .vu1u2, πi ≡ λw(str2→str)→str .w(λustr
1 u

str
2 .ui), L ′

1(n) =
(str2 → str) → str , L ′

1(np) = (str → ((str 2 → str) → str) → str) → str ,
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L ′
1(s) = str . Then O(G ′

1) consists of terms representing some English sen-
tences such as John runs, all men run, all women love a man, and so on.
The agreement between words is handled without using feature structures.

Both modifications on G1 and G2 are independently made without chang-
ing the abstract vocabulary Σ0. The new ACGs G ′

1 = 〈Σ0,Σ
′
1,L

′
1, s〉 and

G ′
2 = 〈Σ0,Σ

′
2,L

′
2, s〉 can generate correct pairs of a grammatical sentence

and its meaning through the common abstract language.

On the other hand, it is known that the expressive power of some gram-
mar formalisms involving a linearity constraint (non-duplication and non-
deletion) does not change when the constraint is relaxed to just non-duplication,
allowing deleting operations. Seki et al. [49] have shown the equivalence be-
tween linear context-free rewriting systems (LCFRSs) and multiple context-
free grammars (MCFGs), which correspond to the relaxed version of LCFRSs
that may have deleting operations. Fujiyoshi [10] has established the equiv-
alence between linear (non-duplicating non-deleting) monadic CFTGs and
non-duplicating monadic CFTGs. Fisher’s result [8, 9] is rather general. He
has shown that the string IO-languages defined by general CFTGs coincide
with the string IO-languages defined by non-deleting CFTGs.

This chapter extends the definition of ACGs and moreover introduces
variants of the definition of the abstract languages. A brief discussion on
the relation among the resultant various classes of ACLs defined by those
extensions is given in Section 3.3. In Section 3.4 we then focus on the rela-
tion between usual linear ACGs and affine ACGs, whose lexical entries may
contain vacuous λ-abstraction, along the line mentioned above. We present
a procedure for constructing a linear ACG corresponding to a given affine
ACG such that the language of the constructed ACG is exactly the set of
the linear λ-terms generated by the original ACG. Therefore, we conclude
that affine ACGs are not essentially more expressive than linear ACGs, since
strings and trees are usually represented by linear λ-terms.

As de Groote and Pogodalla [18,19] have constructed linear ACGs encod-
ing linear CFTGs and LCFRSs, non-duplicating CFTGs and MCFGs are also
encodable by affine ACGs in straightforward ways. For such affine ACGs,
our linearization method constructs linear ACGs which have the form corre-
sponding to linear CFTGs or LCFRSs. Thus, our result is a generalization
of the results we have mentioned above with the exception of Fisher’s, which
covers CFTGs involving duplication.
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3.2 Definitions

In this chapter, we deal with non-linear λ-terms, so the word “λ-term” does
not mean “linear λ-term”, but a general unrestricted λ-term belonging to
ΛK(Σ) defined in Chapter 2. To emphasize the absence of the restriction
to linear λ-terms, we call them λK-terms. A λK-term is a λI-term, if for
every subterm of M of the form λx.N , x ∈ Fv(N). An affine term is a
λK-term such that no variable occurs free twice or more in any subterm of
M . Thus, a linear term is a λK-term that is λI and affine at the same time.
We write ΛK(Σ), ΛI(Σ), Λaff(Σ), Λlin(Σ), respectively for the sets of simply
typed λK-terms, λI-terms, affine terms, linear terms on Σ.

We extend the definition of a lexicon L from Σ0 to Σ1 so that L (a) is not
restricted to linear terms but any simply typed λK-term on Σ1 provided that
it is a compatible pair of a type substitution and a term substitution. We
call the generalized lexicons λK-lexicons. Similarly we define a λI-lexicon, an
affine lexicon and a linear lexicon. A λK-ACG, a λI-ACG, an affine ACG, a
linear ACG are defined in the same way as usual ACGs but the lexicons L

are λK, λI, affine, linear, respectively. GK, GI, Gaff , Glin denotes the class
of λK, λI, affine, linear ACGs respectively, so ACGs satisfying the original
definition are called with the modifier “linear” in this chapter. For each
G∗ ∈ {GK,GI,Gaff ,Glin}, the subclasses denoted by G∗(m,n) ⊆ G∗ are
defined in the same way as in Chapter 2.

Moreover, as we have done for the definition of an ACG, we can give
variations of the definitions of the abstract language and object language of
an ACG. For a λK-ACG G = 〈Σ0,Σ1,L , s〉, let

AK(G ) = {M ∈ ΛK(Σ0) |M is a closed βη-normal term of type s }

OK(G ) = { |L (M)|βη |M ∈ AK(G ) }

Alin(G ) = {M ∈ Λlin(Σ0) |M is a closed βη-normal term of type s }

Olin(G ) = { |L (M)|βη |M ∈ Alin(G ) }.

Note that while Alin(G ) is a subset of Λlin(Σ0), O
lin(G ) is not necessarily a

subset of Λlin(Σ1) if G 6∈ Glin. We define Aaff(G ), Oaff(G ), AI(G ), OI(G )
similarly. For a class G∗ of ACGs, let

LK(G∗) = {OK(G ) | G ∈ G∗ }

Llin(G∗) = {Olin(G ) | G ∈ G∗ }

and Laff(G∗), LI(G∗) be defined similarly. Llin(Glin) is the class of original
abstract categorial languages.
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3.3 Relations among Variants of ACLs

By extending the definition of ACGs and their languages, we have obtained
sixteen classes of languages. In this section, we discuss the relation among
those classes. Let us focus on the four classes of abstract categorial languages
Llin(Glin), Llin(Gaff), Laff(Glin), and Laff(Gaff). We can compare other classes
of languages defined in the previous section similarly. First, by Glin ⊆ Gaff ,
trivially Llin(Glin) ⊆ Llin(Gaff) and Laff(Glin) ⊆ Laff(Gaff) hold. Note that
the fact that Olin(G ) ⊆ Oaff(G ) for all G ∈ G does not imply that Llin(G∗) ⊆
Laff(G∗) for G∗ ∈ {Glin,Gaff}. In fact, the following proposition is rather
easy.

Proposition 3.1. Laff(Gaff(m,n)) ⊆ Llin(Gaff(m,n)).

Proof. Given G = 〈Σ0,Σ1,L , s〉 ∈ Gaff , let us define G ′ = 〈Σ′
0,Σ1,L

′, s〉 ∈
Gaff as follows:

A
′
0 = A0,

C
′
0 = C0 ∪ {Kβ

α | β is a negative subtype of τ0(b) for some b ∈ C0, and

α is a negative subtype of a negative subtype of τ0(a) for some a ∈ C0 },

τ ′0 = τ0 ∪ {Kβ
α 7→ β → α→ β },

L
′ = L ∪ {Kβ

α 7→ λxL (β)yL (α).x }.

It is enough to show that Oaff(G ) = Olin(G ′).
We first show that Oaff(G ) ⊆ Olin(G ′). For M ∈ Λaff(Σ0), let (M)∗ be

defined as follows:

(M)∗ = M if M ∈ C0 ∪ X ,

(M1M2)
∗ = (M1)

∗(M2)
∗,

(λxα.M)∗ =

{
λxα.(M)∗ if x ∈ Fv(M),

Kβ
α(M)∗ if x 6∈ Fv(M) and τ0(M) = β.

It is easy to see that for every M ∈ Aaff(G ), (M)∗ ∈ Alin(G ′) and L ′((M)∗) =
L (M).

Conversely, for N ∈ Alin(G ′), let M be the term obtained from N replac-
ing each occurrence of a constant Kβ

α with λxβyα.x. Clearly M ∈ Aaff(G )
and L ′(N) = L (M).

Thus, Llin(Gaff) is the largest class among the four classes. The above
proof transfers deleting operations in the abstract level into the object level
via constants K that are mapped to λxy.x. Therefore, for G∗ ∈ {Gaff ,GK},
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L◦(G◦(m,n))

L◦(G•(m,n))

L•(G◦(m,n))

L•(G•(m,n))

⊆ ⊆

⊆

if • ≺ ◦ for
{

lin ≺ aff ≺ K,

lin ≺ I ≺ K.

Figure 3.1: Relation among variants of ACLs

we get LK(G∗(m,n)) ⊆ LI(G∗(m,n)) and Laff(G∗(m,n)) ⊆ Llin(G∗(m,n)).
Similarly, duplicating operations in the abstract level can be relegated to
the object level via constants W that are mapped to λxy.xyy. For G∗ ∈
{GI,GK}, we get LK(G∗(m,n)) ⊆ Laff(G∗(m,n)) and LI(G∗(m,n)) ⊆
Llin(G∗(m,n)). Figure 3.1 summarizes the relations among variants of ACLs.

Corollary 3.2. Let ∗ be among {K, I, aff}. The class Llin(G∗(m,n)) is the
largest among Llin(G∗(m,n)), L∗(G∗(m,n)), L∗(Glin(m,n)), Llin(Glin(m,n)).

Therefore, relaxing the linearity constraint on the abstract language does
not enlarge the class of ACLs as much as extending the definition of ACGs
themselves. In the sequel, hence we focus only on ACLs constructed on linear
abstract languages.

3.4 Linearization of Affine ACGs

In the remainder of this chapter, we investigate the relation between Llin(Glin)
and Llin(Gaff) in more detail. While Llin(Glin) consists of languages whose el-
ements are all linear, Llin(Gaff) contain languages including non-linear terms.
Therefore, Llin(Gaff) is properly larger than Llin(Glin). However, since λ-
terms representing strings or trees are all linear, non-linear terms in the
object languages are not very interesting. The main result of this chapter
is that for every G ∈ Gaff(m,n), we can construct G l ∈ Glin(m,max{2, n})
such that

Olin(G l) = {P ∈ Olin(G ) | P is linear }. (3.1)

Moreover, in case of m = 2, we can find G l ∈ Glin(2, n) satisfying the equa-
tion (3.1). Therefore extending the definition of an ACG to allow lexical
entries to be affine does not enrich the expressive power of ACGs in an es-
sential way.
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Before proceeding with our construction, we mention a partially stronger
result on the special case of this problem on second-order string ACGs, ob-
tained from Salvati’s work [45]. He presents an algorithm that converts a lin-
ear second-order string ACG G ∈ Glin

string(2, n) into an equivalent LCFRS (via
a deterministic tree-walking transducer). Even if an input is an affine ACG
G ∈ Gaff

string(2, n), his algorithm still outputs an equivalent LCFRS. Since
every LCFRS is encodable by a linear ACG belonging to Glin

string(2, 4) [18,19],
this entails the following corollary.

Corollary 3.3. For every affine ACG G ∈ Gaff
string(2, n), there is a linear

ACG G ′ ∈ Glin
string(2, 4) such that Olin(G ′) = Olin(G ).

3.4.1 Basic Idea

We explain our basic idea for linearization method for affine ACGs through a
small example. Let us consider the affine ACG G consisting of the following
lexical entries:

x ∈ C0 τ0(x) L (x)

A p→ s λwo2→o.waobo

B p λxoyo.x

where L (s) = o and L (p) = o2 → o. Corresponding to AB ∈ Alin(G ), we
have a ∈ Olin(G ) by

L (AB) ≡ (λwo→o→o.waobo)(λxoyo.x) →β (λxoyo.x)aobo
�β ao. (3.2)

The occurrences of vacuous λ-abstraction λyo causes the deletion of b in (3.2).
Such deleting operation is what we want to eliminate in order to linearize the

affine ACG G . Let us retype λyo with λyo and replace bo with b
o

to indicate
that they should be eliminated. Then (3.2) is decorated by bars as

(λwo→o→o.waob
o
)(λxoyo.x) →β (λxoyo.x)aob

o
�β ao, (3.3)

where we retype wo→o→o with wo→o→o, so that the whole term is well-typed.
In our setting, when a term has a barred type, it means that the term should
be erased during β-reduction steps, and vice versa. By eliminating those
barred terms and types from (3.3), we get

(λwo→o.wao)(λxo.x) →β (λxo.x)ao →β ao, (3.4)

which solely consists of linear terms. Hence, the linear ACG G ′ with the
following lexical entries generates the same language as the original ACG G .

x ∈ C ′
0 τ ′0(x) L ′(x)

A′ [p, o→ o→ o] → [s, o] λwo→o.wao

B′ [p, o→ o→ o] λxo.x
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where [p, o → o → o] and [s, o] are new atomic types that are mapped to
o → o and o, respectively, and [s, o] is the distinguished type. We have

L (AB) = L ′(A′B′). The term λwo→o→o.waob
o
, which is led to L ′(A′), is

just one possible bar-decoration for L (A). For instance, λwo→o→o.waobo

and λwo→o→o.waobo are also possible. Bars appearing in λwo→o→o.waobo

predict that the subterm a will be erased, and λwo→o→o.waobo predicts that
no subterm of it will disappear. Our linearization method also produces
lexical entries corresponding to those bar-decorations.

3.4.2 Formal Definition

We first give a formal definition of the set of possible bar-decorations on a
type and a term. Hereafter, we fix a given affine ACG G = 〈Σ0,Σ1,L , s〉.
Define Σ1 = 〈A1,C1, τ1〉 by

A1 = { p̄ | p ∈ A1 }, C1 = { c̄ | c ∈ C1 }, τ1 = { c̄ → τ1(c) | c ∈ C1 },

where α→ β = α → β. Let Σ′
1 = 〈A ′

1 ,C
′
1, τ

′
1〉 = 〈A1 ∪ A1,C1 ∪ C1, τ1 ∪ τ1〉.

Here, we have the relabeling lexicon ·̃ from Σ′
1 to Σ1 defined as

{
˜̄p = p̃ = p for p ∈ A1,

˜̄c ≡ c̃ ≡ c for c ∈ C1.

For P ∈ Λaff(Σ1), we let P denote the unique term such that P ∈ Λaff(Σ1)

and P̃ ≡ P .
The set T̂ (A1) of possible bar-decorations on types is defined by

T̂ (A1) = {α ∈ T (A ′
1) | if β1 → · · · → βn → p is a subtype of α

for some p ∈ A1, then β1, . . . , βn ∈ T (Σ1) }

Actually, terms in Λaff(Σ′
1) that we are concerned with have types in T̂ (A1).

The reason why we ignore types in T (A ′
1)−T̂ (A1) is that if a term is bound

to be erased, then so is every subterm of it. For instance, if a variable x has
type o→ ō 6∈ T̂ ({o}), then the term xo→ōyo has type ō, which, in our setting,
means that it should disappear. But if xo→ōyo disappears, so does yo, which,
therefore, should have type ō to be consistent with our definition.

The set Λ̂aff(Σ1) of possible bar-decorations on terms is the subset of

Λaff(Σ′
1) such that Q ∈ Λ̂aff(Σ1) iff

• every variable appearing in Q has a type in T̂ (A1), and
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• if λxα.Q′ is a subterm of Q and xα 6∈ Fv(Q′), then α ∈ T (A1).

We are not concerned with terms in Λaff(Σ′
1) − Λ̂aff(Σ1).

The following properties are easily seen:

• If Q ∈ Λ̂aff(Σ1), then τ ′1(Q) ∈ T̂ (A1),

• If Q ∈ Λ̂aff(Σ1) has a type in T (A1), then every subterm of Q is in
Λaff(Σ1),

• If Q ∈ Λ̂aff(Σ1) and Q �β Q
′, then Q′ ∈ Λ̂aff(Σ1).

For each α ∈ T (A1) and P ∈ Λaff(Σ1), Π gives the set of possible bar-
decorations on them:

Π(α) = { β ∈ T̂ (A1) | β̃ = α },

Π(P ) = {Q ∈ Λ̂aff(Σ1) | Q̃ ≡ P }.

In other words, Π and ·̃ are inverse of each other, if we disregard types in
T (A ′

1) − T̂ (A1) and terms in Λaff(Σ′
1) − Λ̂aff(Σ1).

Secondly, we eliminate barred subtypes from α ∈ T̂ (A1) − T (A1) and

barred subterms from Q ∈ Λ̂aff(Σ1) − Λaff(Σ1). Let us define (α)† and (Q)†

as follows:

(p)† = p for p ∈ A1,

(α→ β)† =

{
(α)† → (β)† if α 6∈ T (A1),

(β)† if α ∈ T (A1),

(xα)† ≡ x(α)† ,

(c)† ≡ c for c ∈ C1,

(λxα.Q)† ≡

{
λx(α)† .(Q)† if α 6∈ T (A1),

(Q)† if α ∈ T (A1),

(Q1Q2)
† ≡

{
(Q1)

†(Q2)
† if τ ′1(Q2) 6∈ T (A1),

(Q1)
† if τ ′1(Q2) ∈ T (A1).

The following properties are easily seen (α ∈ T̂ (A1) − T (A1) and Q,Q′ ∈

Λ̂aff(Σ1) − Λaff(Σ1)):

• (α)† ∈ T (A1) and (Q)† ∈ Λlin(Σ1),

• τ1((Q)†) = (τ ′1(Q))†,
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• If Q is β-normal, then so is (Q)†,

• Q =β Q
′ implies (Q)† =β (Q′)†.

Lemma 3.4. Let Q ∈ Λ̂aff(Σ1) be given. If Q and its free variables have

types in T (A1), then (Q)† =β Q =β Q̃.

Proof. Since both functions ·̃ and † preserve the β-equality, we can assume
that Q is β-normal. We show that (Q)† ≡ Q ≡ Q̃ by induction on Q.

If Q ≡ xαQ1 . . . Qm, by α ∈ T (A1), we have τ ′1(Qi) ∈ T (A1) for each
i ∈ {1, . . . , m}. Applying the induction hypothesis to each Qi, we get the

conclusion (Q)† ≡ Q ≡ Q̃.
If Q ≡ cQ1 . . . Qm for c ∈ C ′

1, by τ ′1(Q) ∈ T (A1), we have c ∈ C1. By
the type of c, we can apply the induction hypothesis to each Qi, and get the
conclusion (Q)† ≡ Q ≡ Q̃.

If Q ≡ λxα.Q′, by τ ′1(Q) = α → τ ′1(Q
′) ∈ T (A1), we can apply the

induction hypothesis to Q′. Thus (Q)† ≡ Q ≡ Q̃.

Lemma 3.5. For every closed term P ∈ Λaff(Σ1), |P |β is linear iff there is
Q ∈ Π(P ) whose type is in T (A1).

Proof. First we show the “if” direction. If there is Q ∈ Π(P ) with τ ′1(Q) ∈

T (A1), then (Q)† =β Q̃ ≡ P by Lemma 3.4. Since (Q)† is linear, so is |P |β.
Second we show the “only if” direction by induction on the maximum

number of β-reduction steps from P to |P |β. If P is β-normal and linear,
then P ∈ Π(P ). Otherwise, suppose that P has a β-redex as P ≡ P0[z :=
(λxα.P1)P2], where z occurs free in P0.

Case 1. xα ∈ Fv(P1) and

P ≡ P0[z := (λxα.P1)P2] →β P0[z := P1[P2/x
α]] �β |P |β.

By the induction hypothesis, there is Q′ ∈ Π(P0[z := P1[P2/x
α]]) such that

τ ′1(Q
′) ∈ T (A1). Q

′ has the form Q′ ≡ Q0[z := Q1[Q2/x
β]] for Qi ∈ Π(Pi) for

i = 0, 1, 2, and β ∈ Π(α). Let Q ≡ Q0[z := (λxβ.Q1)Q2]. Clearly Q ∈ Π(P )
and τ ′1(Q) = τ ′1(Q

′) ∈ T (A1).
Case 2. xα 6∈ Fv(P1) and

P ≡ P0[z := (λxα.P1)P2] →β P0[z := P1] �β |P |β.

By the induction hypothesis, there is Q′ ∈ Π(P0[z := P1]) such that τ ′1(Q
′) ∈

T (A1). Q′ has the form Q′ ≡ Q0[z := Q1] for Qi ∈ Π(Pi) for i = 0, 1.
Suppose that yγ ∈ Fv(P2). Since P0[z := (λxα.P1)P2] is closed, P0 contains
an occurrence of the λ-abstraction λyγ that binds the free occurrence of yγ
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in P2. The occurrence of the λ-abstraction λyγ becomes vacuous in P0[z :=

P1]. By Q′ ∈ Π(P0[z := P1]) ⊆ Λ̂aff(Σ1), the corresponding occurrence of
the λ-abstraction in Q0 is λyγ̄. Let Q ≡ Q0[z := (λxᾱ.Q1)P2]. By the
above observation, Q is well-typed (the types of bound variables and their
abstractions are consistent). Clearly Q ∈ Π(P ) and τ ′1(Q) = τ ′1(Q

′) ∈ T (A1).

Second-Order Case

We say that an abstract atomic type p ∈ A0 is useless if there is no M ∈
Alin(G ) that has a subterm whose type contains p. An abstract constant a is
useless if there is no M ∈ Alin(G ) containing a. If an ACG is second-order,
it is easy to check whether the abstract vocabulary contains useless atomic
types or constants, and if so, we easily eliminate useless abstract atomic types
and constants. This can be done as elimination of useless nonterminals and
productions from a context-free grammar.

Definition 3.6. Let G = 〈Σ0,Σ1,L , s〉 be a second-order ACG that has
no useless abstract atomic types or useless abstract constants. We define
G ′ = 〈Σ′

0,Σ1,L
′, [s,L (s)]〉 as follows: define Σ′

0 by

A
′
0 = { [p, β] | p ∈ A0, β ∈ Π(L (p)) − T (A1) }

C
′
0 = { [[a, Q]] | a ∈ C0, Q ∈ Π(L (a)) − Λaff(Σ1) }

τ ′0 = { [[a, Q]] 7→ ([τ0(a), τ
′
1(Q)])‡ } where

([p, β])‡ = [p, β],

([α→ γ, β → δ])‡ =

{
([α, β])‡ → ([γ, δ])‡ if β 6∈ T (A1),

([γ, δ])‡ if β ∈ T (A1),

and L ′ by

L
′([p, β]) = (β)†, L

′([[a, Q]]) = (Q)†.

G ′ is linear, but it may contain useless abstract atomic types or constants.
The linearized ACG G l for G is the result of eliminating all the useless ab-
stract atomic types and constants from G ′.

Lemma 3.7. Let G and G ′ be as in Definition 3.6.
For every variable-free M ∈ Λlin(Σ0) of an atomic type and every Q ∈

Π(L (M))−Λaff(Σ1), there is N ∈ Λlin(Σ′
0) such that τ ′0(N) = [τ0(M), τ ′1(Q)]

and L ′(N) ≡ (Q)†.
Conversely, for every variable-free N ∈ Λlin(Σ′

0) of an atomic type, there
are M ∈ Λlin(Σ0) and Q ∈ Π(L (M)) − Λaff(Σ1) such that τ ′0(N) = [τ0(M),
τ ′1(Q)] and L ′(N) ≡ (Q)†.
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Proof. Induction on M and N respectively.
Let M = aM1 . . .Mm ∈ Λlin(Σ0). Q ∈ Π(L (M)) is written as

Q ≡ Q0Q1 . . . Qm,

where Q0 ∈ Π(L (a)) and Qi ∈ Π(L (Mi)) for i ∈ {1, . . . , m}. Let I = { i |
1 ≤ i ≤ m, τ ′1(Qi) 6∈ T (A1) }. Then,

(Q)† ≡ (Q0)
†(Qi1)

† . . . (Qik)
†,

where {i1, . . . , ik} = I. By the definition of G ′, there is [[a, Q0]] ∈ C ′
0 such

that

τ ′0([[a, Q0]]) = [τ0(Mi1), τ
′
1(Qi1)] → · · · → [τ0(Mik), τ

′
1(Qik)] → [τ0(M), τ ′1(Q)]

L
′([[a, Q0]]) ≡ (Q0)

†

For each i ∈ I, the induction hypothesis gives Ni ∈ Λlin(Σ′
0) such that

τ ′0(Ni) = [τ0(Mi), τ
′
1(Qi)] and L ′(Ni) ≡ (Qi)

†. Clearly for

N ≡ [[a, Q0]]Ni1 . . . Nik ,

we have τ ′0(N) = [τ0(M), τ ′1(Q)] and L ′(N) ≡ (Q)†.
Conversely, suppose that a variable free term N ∈ Λlin(Σ′

0) of an atomic
type is given. For the head [[a, Q0]] of N , let

τ0(a) = p1 → · · · → pm → p0,

τ ′1(Q0) = α1 → · · · → αm → α0,

where αi ∈ Π(L (pi)) for i ∈ {0, 1, . . . , m}. Let I = { i | 1 ≤ i ≤ m, αi 6∈
T (A1) }. Then, we have

τ ′0([[a, Q0]]) = [pi1 , αi1 ] → · · · → [pik , αik ] → [p0, α0],

N ≡ [[a, Q0]]Ni1 . . . Nik ,

where {i1, . . . , ik} = I. For each i ∈ I, the induction hypothesis gives Mi ∈
Λlin(Σ0) and Qi ∈ Π(L (Mi))−Λaff(Σ1) such that τ ′0(Ni) = [τ0(Mi), τ

′
1(Qi)] =

[pi, αi] and L ′(Ni) ≡ (Qi)
†. Recall that G has neither useless atomic types

nor useless constants. Thus for each j ∈ {1, . . . , m}−I, we can find a variable-
free term Mj ∈ Λlin(Σ0) of type pj. Let Qj ≡ L (Mj) for j ∈ {1, . . . , m}− I.
Let

M ≡ aM1 . . .Mm,

Q ≡ Q0Q1 . . . Qm.
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Clearly

Q ∈ Π(L (M)) − Λaff(Σ0),

τ ′0(N) = [p0, α0] = [τ0(M), τ ′1(Q)],

L
′(N) ≡ L

′([[a, Q0]]Ni1 . . . Nik)

≡ (Q0)
†(Qi1)

† . . . (Qik)
†

≡ (Q)†.

Theorem 3.8. For every affine ACG G ∈ Gaff(2, n), there is a linear ACG
G l ∈ Glin(2, n) such that Olin(G l) = {P ∈ Olin(G ) | P is linear }.

Proof. It is enough to show that Olin(G ′) = {P ∈ Olin(G ) | P is linear }.

Let M ∈ Alin(G ) be such that |L (M)|βη is linear. By Lemma 3.5, there
is Q ∈ Π(L (M)) of type L (s). By applying Lemma 3.7 to M and Q, we
have N ∈ Λlin(Σ′

0) with τ ′0(N) = [s,L (s)] and L ′(N) ≡ (Q)†. We have
N ∈ Alin(G ′). Together with Lemma 3.4, it holds that L ′(N) ≡ (Q)† =β

Q̃ ≡ L (M).

Let N ∈ Alin(G ′). By applying Lemma 3.7 to N , we have M ∈ Λlin(Σ0)
and Q ∈ Π(L (M)) − Λaff(Σ1) such that τ0(M) = s, τ ′1(Q) = L (s), and
L ′(N) ≡ (Q)†. We have M ∈ Alin(G ). Together with Lemma 3.4, it holds

that L ′(N) ≡ (Q)† =β Q̃ ≡ L (M).

De Groote and Pogodalla [18, 19] have presented encoding methods for
linear CFTGs and LCFRSs by linear ACGs. Their methods can also be
applied to non-duplicating CFTGs and MCFGs.

Example 3.9. Let a non-duplicating CFTG G consist of the following pro-
ductions:

S → Pab, P [x1, x2] → P (cx1)(cS) | dx1x2,

where the ranks of S, P , a, b, c, d are 0, 2, 0, 0, 1, 2, respectively. De Groote
and Pogodalla’s method transforms G into the following affine ACG G :

x ∈ C0 τ0(x) L (x)

A p→ s λyo2→o
p .ypa

obo

B s→ p→ p λyo
sy

o2→o
p xo

1x
o
2.yp(c

o→ox1)(c
o→oys)

C p λxo
1x

o
2.d

o2→ox1x2

When we apply the linearization method given in Definition 3.6 to G , we get
the following linear ACG G l whose distinguished type is [s, o]:
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x ∈ C l
0 L l(x)

τ l
0(x)

[[A, λyo→o→o
p .ypab]]

λyo2→o
p .ypab[p, o→ o→ o] → [s, o]

[[A, λyo→o→o
p .ypab]]

λyo→o
p .ypa[p, o→ o→ o] → [s, o]

[[B, λyo
sy

o→o→o
p xo

1x
o
2.yp(cx1)(cys)]] λyo

sy
o2→o
p xo

1.yp(cx1)(cys)[s, o] → [p, o→ o→ o] → [p, o→ o→ o]
[[B, λyo

sy
o→o→o
p xo

1x
o
2.yp(cx1)(cys)]] λyo→o

p xo
1.yp(cx1)[p, o→ o→ o] → [p, o→ o→ o]

[[C, λxo
1x

o
2.dx1x2]] λxo

1x
o
2.dx1x2[p, o→ o→ o]

The linearized ACG G l is actually the encoding of the linear CFTG G′ con-
sisting of the following productions:

S → P (a, b) | P ′(a), P ′(x1) → P (c(x1), c(S)) | P ′(c(x1)),

P (x1, x2) → d(x1, x2),

where the ranks of nonterminals S, P , P ′ are 0, 2, 1, respectively. G, G , G l,
and G′ generate the same tree language.

The following corollary generalizes the result by Fujiyoshi [10], which
covers the monadic case only.

Corollary 3.10. For every non-duplicating CFTG G, there is a linear CFTG
G′ such that G and G′ generate the same tree language.

De Groote and Pogodalla [19]’s encoding method of LCFRSs by linear
ACGs described in Section 2.2.1 can be applied to MCFGs also. Let G be
the affine ACG that encodes an MCFG G. The linearized ACG G l is indeed
in the form that is the encoding of an LCFRS, while G ′ is not. We here
explain that lexical entries of G ′ that cannot be interpreted as the encodings
of productions of an LCFRS are useless. For instance, for the production
rule S → f() with f() = 〈a〉 of an MCFG, G has the corresponding abstract
constant A of type S that is mapped to the term

λzstr→str .za.

The linearization method in Definition 3.6 lets G ′ have the following lexical
entries:
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x ∈ C ′
0 τ ′0(x) L ′(x)

[[A, λzstr→str .za]] [S, (str → str) → str ] λzstr→str .za
[[A, λzstr→ō→o.za]] [S, (str → ō→ o) → ō→ o] λzstr→o.za

[[A, λzstr→str .zā]] [S, (str → str) → str ] λzstr .z

[[A, λzstr→ō→o.zā]] [S, (str → ō→ o) → ō→ o] λzo.z

Recall that a nonterminal symbol of rank k in an LCFRS is encoded as
an abstract atomic type mapped to (str k → str) → str by the lexicon in
the corresponding linear ACG. In the above table, the new atomic types
[S, (str → ō → o) → ō → o] and [S, (str → ō → o) → ō → o] are, how-
ever, mapped to (str → o) → o and o → o, respectively. Those atomic
types cannot be interpreted as the encodings of nonterminals of an LCFRS.
Consequently, the abstract constants [[A, λzstr→ō→o.za]] and [[A, λzstr→ō→o.zā]]
cannot be interpreted as the encodings of some productions of an LCFRS.
We show that indeed those abstract constants are useless.

Let
Γ = { (α1 → · · · → αk → str) → str | αi ∈ {str , str} }.

We prove that for every new abstract atomic type [p, α] with p 6= s′, where s′

is the distinguished type of the affine ACG G , if α 6∈ Γ, then [p, α] is useless
in G ′. Let

∆ = { (α1 → · · · → αk → ō→ o) → ō→ o | αi ∈ {str , str} }.

First we show that if a variable-free term N ∈ Λlin(Σ′
0) has an atomic type

[p, γ] with p 6= s′, then γ ∈ Γ ∪ ∆ holds, and moreover, if a subterm N ′ of
N has a type [q, γ′], then either γ, γ′ ∈ Γ or γ, γ′ ∈ ∆. Let [[A, Q]] be the
head of N , τ0(A) = p1 → · · · → pm → q, τ ′1(Q) = α1 → · · · → αm → β. By
τ ′0([[A, Q]]) = ([p1, α1] → · · · → [pm, αm] → [q, β])‡, N has the form

N ≡ [[A, Q]]Ni1 . . . Nin

where {i1, . . . , in} = { i | αi 6∈ T (A1) }. Let

Q ≡ λyα1
1 . . . yαm

m zβ0 .y1(λ~x1. . . . ym(λ~xm.zQ1 . . . Qk) . . . )

where β = β0 → γ for γ ∈ {str , ō → o}. Then, α1 has the form α′
1 → γ 6∈

T (A1). Thus, i1 = 1. By applying the induction hypothesis to N1, we see
α1 ∈ Γ ∪ ∆ and α1 = (τ ′1(~x1) → γ) → γ. Applying the same discussion to
α2, . . . , αm repeatedly, we have n = m, ij = j, and αi = (τ ′1(~xi) → γ) → γ ∈
Γ ∪ ∆. αi ∈ Γ ∪ ∆ implies that the type of each variable in ~xi is either str
or str . Thus, Qj consists of atomic terms of types in {str , str} and hence the
type of each Qj is either str or str . Therefore,

β = β0 → γ = (τ ′1(Q1) → · · · → τ ′1(Qm) → γ) → γ ∈ Γ ∪ ∆.
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Let N ∈ Alin(G ′). N has the form [[S, Q]]N ′, where τ ′0([[S, Q]]) = [S, α] →
[s′, str ]. By applying the above claim to N ′, we have α ∈ Γ ∪ ∆. Let

Q ≡ λy(α1→α2)→α3 .y(λxα4 .x) ∈ Π(L (S)) = Π(λy(str→str)→str .y(λxstr .x)),

where α = (α1 → α2) → α3. We have α3 = str by τ ′1(Q) = α → str ,
α1 → α2 = α4 → α4 by the well-typedness of Q, and α2 = α3 by α ∈ Γ ∪ ∆.
Therefore, Q ≡ L (S) and α = (str → str) → str ∈ Γ. The above claim
entails that if a subterm of N ∈ A(G ′) has a type [q, γ] with q 6= s′, then
γ ∈ Γ. Therefore, every useful abstract atomic type of G ′ is mapped to
(strk → str) → str for some non-negative integer k, which is interpreted as
the encoding of a nonterminal of rank k in an LCFRS.

Note that the LCFRS obtained from an MCFG through our linearization
method may have nonterminals of rank 0, though usual definitions of an
LCFRS do not allow nonterminals to have rank 0. Mathematically speaking,
allowing or disallowing nonterminals of rank 0 does not matter at all. The
reason why usual definitions of an LCFRS do not allow nonterminals to have
rank 0 is just to avoid redundancy. If a nonterminal Ak has rank 0, and a
production Ak → f(B1, . . . , Bm) is in an LCFRS, then f is the function that
maps the empty sequence to the empty sequence and each Bi has rank 0. If Ak

appears in the right-hand side of a production as C → g(A1, . . . , Ak, . . . , An),
we can eliminate Ak from the right-hand side without modifying the function
g, which is a function from

∏
1≤i≤n(T ∗)ρ(Ai) =

∏
1≤i≤n

i6=k
(T ∗)ρ(Ai) to (T ∗)ρ(C).

Note that here we work modulo the associativity of the cartesian product,
i.e., we identify (T ∗)n × (T ∗)m with (T ∗)n+m. Thus, we can simply ignore
nonterminals of rank 0 if they occur in an LCFRS.

Therefore, our result covers the following theorem shown by Seki et al. [49]

Corollary 3.11. For every MCFG G, there is an LCFRS G′ such that the
languages generated by G and G′ coincide.

Third or Higher-Order Case

Definition 3.6 itself does not depend on the order of the given affine ACG
except for checking whether useless abstract atomic types or useless atomic
constants exist. For the general case, however, the linearized ACG given in
Definition 3.6 may generate a strictly larger language than the original affine
ACG. In the remainder of this chapter, we present a linearization method
for general affine ACGs.
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Example 3.12. Suppose that an affine ACG G ∈ Gaff(3, 1) consists of the
following lexical entries:

x ∈ C0 τ0(x) L (x)

A q #
B p→ q → q λyozo.bz
C q → s λzo.z
D (p→ s) → s λxo→o.a(xe)

We have

Alin(G ) = {D(λyp
1.D(λyp

2. . . .D(λyp
n.C(Byi1(Byi2(. . . (ByinA) . . . )))) . . . ))

| n ≥ 0, {i1, . . . , in} = {1, . . . , n} }

Olin(G ) = {

n-times︷ ︸︸ ︷
a(. . . (a(

n-times︷ ︸︸ ︷
b(. . . (b #) . . . )) . . . ) | n ≥ 0 }.

G ′ consists of the following lexical entries:

x ∈ C ′
0 τ ′0(x) L ′(x)

[[A,#]] [q, o] #
[[B, λyōzo.bz]] [q, o] → [q, o] λzo.bz

[[C, λzo.z]] [q, o] → [s, o] λzo.z
[[D, λxō→o.a(xē)]] [s, o] → [s, o] λxo.ax
[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λxo→o.a(xe)

The last lexical entry is useless. We have

Alin(G ′) = {

m-times︷ ︸︸ ︷
D′(. . . (D′(C′(

n-times︷ ︸︸ ︷
B′(. . . (B′ A′) . . . )) . . . ) | m,n ≥ 0 }

Olin(G ′) = {

m-times︷ ︸︸ ︷
a(. . . (a(

n-times︷ ︸︸ ︷
b(. . . (b #) . . . )) . . . ) | m,n ≥ 0 } ) Olin(G )

where A′, B′, C′, D′ are, respectively, the first, second, third, fourth abstract
constants of G ′ shown in the above table. Though any term of type p that
is the first argument of an occurrence of B is bound to be erased in the
original ACG G , we cannot ignore the occurrence of the type p, because that
occurrence of p balances the numbers of occurrences of B and D in a term in
Alin(G ).

Our alternative linearization method presented later gives the linear ACG
G ′′ consisting of the following lexical entries (useless lexical entries are sup-
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pressed):

x ∈ C ′′
0 τ ′′0 (x) L ′′(x)

[[A,#]] [q, o] #
[[B, λyozo.bz]] [p, o] → [q, o] → [q, o] λyo→ozo.y(bz)

[[C, λzo.z]] [q, o] → [s, o] λzo.z

[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λx(o→o)→o.a(x(λzo.z))

where [p, o] is mapped to o→ o. For

M ≡ D(λyp.C(ByA)) ∈ Alin(G ),

we have
N ≡ D′′(λy[p,o].C′′(B′′yA′′)) ∈ Alin(G ′′)

where A′′, B′′, C′′, D′′ are, respectively, the first, second, third, fourth abstract
constants of G ′′ shown in the above table. It is easy to check that L (M) =
L ′′(N) = a(b#). We have O(G ) = O(G ′′).

Now, we give the formal definition of our new linearization method for
general affine ACGs. For simplicity, we assume that A1 = {o} here, but it
is possible to lift this assumption. The new linearized ACG G ′′ has the form
G ′′ = 〈Σ′′

0,Σ1,L
′′, [s,L (s)]〉, where Σ′′

0 is defined by

A
′′
0 = { [p, β] | p ∈ A0, β ∈ Π(L (p)) }

C
′′
0 = { [[a, Q]] | a ∈ C0, Q ∈ Π(L (a)) }

τ ′′0 = { [[a, Q]] 7→ [τ0(a), τ
′
1(Q)] } where [α → γ, β → δ] = [α, β] → [γ, δ].

Here we have two simple lexicons L0 : Σ′′
0 → Σ0 and L1 : Σ′′

0 → Σ′
1 such that

L0([p, β]) = p, L0([[a, Q]]) = a,

L1([p, β]) = β, L1([[a, Q]]) = Q.

L0 is relabeling. We have L̃1(N) ≡ L ◦ L0(N) for N ∈ Λlin(Σ′′
0).

Lemma 3.13. For every Q ∈ Λ̂aff(Σ1) and α ∈ T (A0), the following state-
ments are equivalent:

(i) There is M ∈ Λlin(Σ0) of type α such that L (M) ≡ Q̃.

(ii) There is N ∈ Λlin(Σ′′
0) of type [α, τ ′1(Q)] such that L1(N) ≡ Q.

Proof. The direction [(ii) ⇒ (i)] can be shown by letting M ≡ L0(N).
The opposite direction [(i) ⇒ (ii)] can be shown by induction on M . Let

N ≡ χ(M,Q) where
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• χ(a, Q) ≡ [[a, Q]],

• χ(xα, xβ) ≡ x[α,β],

• χ(M1M2, Q1Q2) ≡ χ(M1, Q1)χ(M2, Q2),

• χ(λxα.M ′, λxβ.Q′) ≡ λx[α,β].χ(M ′, Q′).

Here, L0(χ(M,Q)) ≡ M , L1(χ(M,Q)) ≡ Q, and χ(L0(N),L1(N)) ≡ N
hold.

Lemmas 3.5 and 3.13 imply

{M ∈ A(G ) | |L (M)|β is linear } = {L0(N) | N ∈ A(G ′′) }. (3.5)

Since (L1(N))† =β L̃1(N) ≡ L ◦L0(N) for every N ∈ A(G ′′) by Lemma 3.4,
it is enough to define a new lexicon L ′′ so that

L
′′(N) =βη (L1(N))† (3.6)

for every N ∈ A(G ′′).
We define the type substitution σ : A ′′

0 → T ({o}) of L ′′ = 〈σ, θ〉 as

σ([p, β]) =

{
(β)† if β 6∈ T ({ō}),

o→ o if β ∈ T ({ō}).

Here we identify σ with its homomorphic extension. For each [α, β] ∈ T (A ′′
0 )

such that β ∈ T̂ ({o})−T ({ō}), we define two linear combinators Xβ
α of type

σ([α, β]) → (β)† and Y β
α of type (β)† → σ([α, β]) by mutual induction. Let

[α, β] = [α1, β1] → · · · → [αm, βm] → [p, β0] with [p, β0] ∈ A ′′
0 and the set

{1, . . . , m} be partitioned into two subsets I and J so that βi 6∈ T ({ō}) iff i ∈
I. Let I = {i1, . . . , ik} with ij < ij+1 for each 1 ≤ j < k and J = {j1, . . . , jl}.
If i ∈ J , then the linear combinators Zσ([αi,βi]) and Zσ([αi,βi])→o→o (given in
Lemma 2.12) are well-defined by the definition of σ. We define

Xβ
α ≡ λyσ([α,β])x

(βi1
)†

i1
. . . x

(βik
)†

ik
.yσ([α,β])R1 . . . Rm

where Ri ≡

{
Y βi

αi
x

(βi)
†

i if i ∈ I,

Zσ([αi,βi]) if i ∈ J ,

and

Y β
α ≡ λx(β)†y

σ([α1,β1])
1 . . . yσ([αm,βm])

m ~z.Mj1(. . . (Mjl
(x(β)†Li1 . . . Lik~z)) . . . )
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where ~z is short for zγ1

1 . . . zγn
n for (β0)

† = γ1 → · · · → γn → o, and
{
Li ≡ Xβi

αi
y

σ([αi,βi])
i for i ∈ I,

Mi ≡ Zσ([αi,βi])→o→oy
σ([αi,βi])
i for i ∈ J .

Note that if [α, β] = [p, β0] ∈ A ′′
0 , then Xβ0

p =βη Y
β0
p =βη λz

(β0)†.z.
Now, we give a new linearization method as follows.

Definition 3.14. For a given affine ACG G , we define a new linear ACG as
G ′′ = 〈Σ′′

0,Σ1,L
′′, [s,L (s)]〉, where L ′′ = 〈σ, θ〉 for σ as above and

θ([[a, Q]]) ≡

{
|Y

τ ′
1(Q)

τ0(a)
(Q)†|β if Q 6∈ Λaff(Σ1),

Zσ(τ ′′
0 ([[a,Q]])) if Q ∈ Λaff(Σ1).

Thus, if the given affine ACG G belongs to Gaff(m,n), then G ′′ belongs
to Glin(m,max{2, n}).

Lemma 3.15. Given N ∈ Λ(Σ′′
0) of type [α, β] such that β 6∈ T ({ō}) and

L1(N) ∈ Λ̂aff(Σ1), we have

(L1(N))† =βη X
β
αL

′′(N)φN

where φN denotes the substitution on the free variables of L ′′(N) such that

xσ([α,β])φN =

{
Y β

α x
(β)† if x has the type [α, β] in N and β 6∈ T ({ō}),

Zσ([α,β]) otherwise.

Proof. We assume that N is in long normal form for simplicity. The proof is
done by induction on N .

Case 1. Suppose that N = λx
[α1,β1]
1 . . . x

[αm,βm]
m .N ′ have type [α, β] =

[α1, β1] → · · · → [αm, βm] → [p, β0] with m ≥ 1. Let us partition the set
{1, . . . , m} into two subsets I and J so that βi 6∈ T ({ō}) iff i ∈ I and
βi ∈ T ({ō}) iff i ∈ J . Let the elements of I be i1, . . . , ik with ij < ij+1 for
1 ≤ j < k. Since Fv(N ′) = Fv(N) ∪ {x1, . . . , xm}, we have

φN ′ = φN ∪ { x
σ([αi,βi])
i 7→ Ri | 1 ≤ i ≤ m }

where Ri =

{
Y βi

αi
xi if i ∈ I,

Zσ([αi ,βi]) if i ∈ J .

Thus, together with the induction hypothesis and X
β0]
p = λz(β0)†.z,

(L1(N))† ≡ λx
(βi1

)†

i1
. . . x

(βik
)†

ik
.(L1(N

′))†

=βη λx
(βi1

)†

i1
. . . x

(βik
)†

ik
.
(
Xβ0

p L
′′(N ′)φN ′

)

�β λx
(βi1

)†

i1
. . . x

(βik
)†

ik
.
(
L

′′(N ′)[Ri/x
σ([αi ,βi])
i ]1≤i≤m

)
φN . (3.7)



3.4 Linearization of Affine ACGs 43

On the other hand,

Xβ
αL

′′(N)φN

≡
(
λyσ([α,β])x

(βi1
)†

i1
. . . x

(βik
)†

ik
.yR1 . . . Rm

)
L

′′(λx
[α1,β1]
1 . . . x[αm,βm]

m .N ′)φN

�β λx
(βi1

)†

i1
. . . x

(βik
)†

ik
.L ′′(λx

[α1,β1]
1 . . . x[αm,βm]

m .N ′)R1 . . . RmφN

�β λx
(βi1

)†

i1
. . . x

(βik
)†

ik
.
(
L

′′(N ′)[Ri/x
σ([αi ,βi])
i ]1≤i≤m

)
φN . (3.8)

(3.7) and (3.8) coincide.
Case 2. Suppose that N = x[α,β]N1 . . . Nm where α = α1 → · · · →

αm → p, β = β1 → · · · → βm → β0. Let us partition the set {1, . . . , m}
into two subsets I and J so that βi 6∈ T ({ō}) iff i ∈ I and βi ∈ T ({ō}) iff
i ∈ J . Let the elements of I be i1, . . . , ik with ij < ij+1 for 1 ≤ j < k and
J = {j1, . . . , jl}. By the induction hypothesis,

(L1(N))† ≡ x(β)†(L1(Ni1))
† . . . (L1(Nik))

†

=βη x
(β)†(Xi1L

′′(Ni1)φNi1
) . . . (XikL

′′(Nik)φNik
) (3.9)

where Xi = Xβi
αi

.
On the other hand, since Xβ0

p is the identity,

Xβ0
p L

′′(N)φN �β L
′′(N)φN

≡
(
Y β

α x
(β)†

)(
L

′′(N1)φN1

)
. . .

(
L

′′(Nm)φNm

)

�β

(
λy

σ([α1,β1])
1 . . . yσ([αm,βm])

m ~z.Mj1(. . . (Mjl
(x(β)†Li1 . . . Lik~z)) . . . )

)
(
L ′′(N1)φN1

)
. . .

(
L ′′(Nm)φNm

)

where {
Li = Xβi

αi
yi for i ∈ I,

Mi = Zσ([αi ,βi])→o→oyi for i ∈ J .

For j ∈ J , it is easy to see that if a subterm (a free variable in partic-
ular) of Nj has a type [γ, δ], then δ = L (γ) ∈ T ({ō}). Thus, φNj

sub-
stitutes linear combinators for all the free variables of L ′′(Nj). Therefore,
L ′′(Nj)φNj

and Mj[L
′′(Nj)φNj

/yj] are linear combinators. By the type
o → o of Mj[L

′′(Nj)φNj
/yj], we see Mj[L

′′(Nj)φNj
/yj] �β λzo.z. There-

fore

L
′′(N)φN �β λ~z.x

(β)†(Xi1L
′′(Ni1)φNi1

) . . . (XikL
′′(Nik)φNik

)~z

�η x
(β)†(Xi1L

′′(Ni1)φNi1
) . . . (XikL

′′(Nik)φNik
). (3.10)
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(3.9) and (3.10) coincide.
Case 3. Suppose that N = [[a, Q]]N1 . . . Nm. This case can be treated by

replacing the head variable x[α,β] in the previous case with [[a, Q]].

Theorem 3.16. For every affine ACG G ∈ Gaff(m,n), there is a linear ACG
G ′′ ∈ Glin(m,max{2, n}) such that Olin(G ′′) = {P ∈ Olin(G ) | P is linear }.

Proof. Applying Lemma 3.15 to N ∈ Alin(G ′′), we get the equation (3.6),

since φN is the empty substitution and X
L (s)
s is the identity.

3.4.3 Open Issues

In this section, we have presented how vacuous lambda abstraction can be
eliminated from affine ACGs. It is natural to ask whether or not we can
transform a λK-ACG G into a λI-ACGs G ′ such that Olin(G ′) = {P ∈
Olin(G ′) | P is λI }. That is future work. Recall that the affine term
λx(o→o→o)→o.x(λzo

1z
o
2.z1) is retyped as λx(o→ō→o)→o.x(λzo

1z
ō
2.z1) by our method.

However, we cannot retype the non-affine term

λx(o→o)→o.f
(
x(o→o)→o(λzo.a)

)(
x(o→o)→o(λzo.zo)

)

as
λx(?→o)→o.f

(
x(ō→o)→o(λzō.a)

)(
x(o→o)→o(λzo.zo)

)
.

The author conjectures that one can eliminate vacuous λ-abstraction from
semi-affine ACGs, where a λK-term is semi-affine if for every free variable
x of any subterm, either

• x occurs exactly once, or

• x has an atomic or second-order type.

For instance, for the semi-affine term

(
λuo→ovo→ozo.f(uo→ozo)(vo→ozo)

)
(λxo.xo)(λyo.ao),

although (
λuo→ovō→oz?.f(uo→ozo)(vō→ozō)

)
(λxo.xo)(λyō.ao)

is not well-typed, the term

(
λuo→ovozo.f(uo→ozo)vo

)
(λxo.xo)ao

obtained by eliminating barred terms and types from the previous one is well-
typed. If the construction based on this idea is correct, it implies that every
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CFTG has a corresponding non-deleting CFTG whose IO-tree language is
equivalent, because every CFTG can be encoded with respect to the IO-
tree language by an ACG belonging to GK

tree(2, 2) such that only variables
of atomic types occur more than once in its lexical entries, and vice versa.
This also entails Fisher’s result [8, 9] that every CFTG has a corresponding
non-deleting CFTG whose IO-string language is equivalent.

On the other hand, the author conjectures that it is impossible to linearize
λI-ACGs, i.e., there is a λI-ACG G such that for any linear ACG G ′,

{P ∈ Olin(G ) | P is linear } 6= Olin(G ′).

However, it seems difficult to prove it, as we have not yet found any recur-
sively enumerable language that cannot be generated by any linear ACG. At
least, we know that the above statement is true when we consider only second-
order ACGs. The following second-order λI-ACG G ∈ GI

string(2, 2) generates
a non-semilinear language, which cannot be generated by any second-order
linear ACG by Proposition 2.20.

x ∈ C0 τ0(x) L1(x)

A s /c/
B s→ s λxstr .x + x

Olin(G ) = { /c2n

/ | n ∈ N }.

3.5 Summary

This chapter has discussed non-linear extensions of ACGs. The original
ACGs have two kinds of linearity constraint: one on the lexicons, one on the
abstract languages. Section 3.3 shows that relaxing the linearity constraint
on the abstract language does not enlarge the class of ACLs as much as
allowing non-linear lexicons.

The main issue of this chapter is comparison of generative capacity of
original linear ACGs and affine ACGs, which may have vacuous lambda
abstraction. In Section 3.4, we have established the equivalence between
affine ACGs and linear ACGs by presenting two procedures transforming
affine ACGs into linear ACGs. The first one is for second-order affine ACGs
and the second one, which is an elaboration of the first one, is for third or
higher-order ACGs.

The first linearization method covers the results obtained by Seki et
al. [49] and Fujiyoshi [10]. Seki et al. have shown the equivalence between
MCFGs and LCFRSs, and Fujiyoshi has shown the equivalence between
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monadic non-duplicating CFTG and monadic linear CFTG with respect to
tree languages. Their and our common basic idea is to eliminate deleting
operations and some strings or subtrees in productions from the given gram-
mar that would be erased by deleting operations during derivations. Their
techniques create new productions from an original production by replacing
nonterminals by new nonterminals of less ranks and fewer arguments. In
this sense, their techniques work only on “second-order” settings. On the
other hand, our linearization method generalizes their techniques for higher-
order settings. From a type appearing in the given affine ACG, our method
constructs types by eliminating subtypes of the original.

Moreover, our method entails the new result as a corollary that non-
duplicating CFTGs and linear CFTGs are equivalent with respect to tree
languages. This demonstrates that studying ACGs would be investigation
of mildly context-sensitive grammars. Our result strengthens de Groote and
Pogodalla’s view that ACGs can be the kernel of a grammatical framework;
not only well known grammar formalisms themselves, but also a transforma-
tion of existing grammar formalisms are encoded in ACGs.

The second linearization method can also be applied to second-order affine
ACGs actually and it transforms non-duplicating CFTGs into linear CFTGs,
but it does not give a conversion from MCFGs to LCFRS. The advantage of
the second method is not only the fact that it is applicable to every affine
ACGs, but also it preserves the original derivation structures in the sense that
the original abstract language is the image of the new abstract language under
a relabeling lexicon, namely L0 on page 40. As we will see in Section 5.6,
due to this property, the second linearization method is still valid for multi-
dimensional extensions of affine ACGs.

Though every affine ACG admits linearization, our both constructions
increase the size of the given grammar exponentially due to the definition of
Π, so there still exists an advantage of allowing deleting operations in the
ACG formalism. For instance, the atomic type np of the abstract vocabulary
of the ACG in Example 1 will be divided up into three new atomic types
(not counting other useless types) which correspond to noun phrases as third
person singular subjects, plural subjects, and objects respectively.



Chapter 4

Lexicalized Abstract Categorial
Grammars

4.1 Introduction

A formalization of the notion of lexicalized grammars is given by Schabes et
al. [47, 48] A grammar is called lexicalized if each of its lexical entries that
contribute to deriving an element of the language contains an item, called a
lexical item, that explicitly appears on the surface of the derived structure.
From the point of lexicalists’ view, which thinks that linguistic phenomena
should be accounted for by the inherent information in the lexical entries,
to be lexicalized is a natural requirement. Moreover, not only from the
lexicalists’ point of view, but also from the point of view of the computational
complexity, to be lexicalized is often thought to be desirable. At least, the
decidability of the universal membership problem for lexicalized grammar is
guaranteed in general.

Preceding research showed that some grammar formalisms admit lexical-
ization. Greibach [13] showed that every CFG has an equivalent (modulo the
empty string) CFG in Greibach normal form, which can be thought of as a
lexicalized grammar, because every production contains a terminal symbol in
its right hand side. Schabes et al. [47, 48] presented a lexicalization method
that converts finitely ambiguous TAGs into lexicalized TAGs.

This chapter is devoted to discussion of lexicalized ACGs. We say that
an ACG is lexicalized iff every abstract constant is mapped to an object
term containing an object constant. Although the origin of ACGs is located
in a history of categorial grammars, ACGs are not necessarily lexicalized
grammars by definition unlike usual categorial grammars.

In Section 4.2, which is based on Yoshinaka and Kanazawa’s paper [61],

47
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the generative capacity and complexity of lexicalized ACGs is discussed.
We see that the universal membership problem for lexicalized ACG is NP-
complete. This result contrasts with the one for general ACGs and suggests
that the restriction to lexicalized ACGs may be preferable from the point of
view of computational complexity as well as of lexicalism.

Although the paper [61] claims that every second-order ACG admits lex-
icalization, the proof is in error. Kanazawa and Yoshinaka [27] give a correct
proof. The main result of this chapter is a generalization of that claim. In
Section 4.3, we show that semilexicalized ACGs, which form a superclass of
second-order ACGs, admit lexicalization.

4.2 Lexicalized ACGs

Definition 4.1. For an ACG G = 〈Σ0,Σ1,L , s〉, an abstract constant a ∈ C0

is said to be lexical with respect to L if L (a) contains a constant; otherwise,
i.e., if L (a) is a combinator, a is nonlexical with respect to L . If every
abstract constant of an ACG is lexical, it is called a lexicalized ACG and the
class of lexicalized ACGs is denoted by Glex.

If the lexicon L is clear from the context, we suppress the words “with
respect to L ”.

Note that there is a gap between the notion of a lexicalized ACG in this
thesis and the definition of a lexicalized TAG by Schabes et al. [47,48] While
labels of internal nodes in a tree are not regarded as lexical items in Schabes
et al.’s setting, labels of both internal nodes and leaf nodes, which are repre-
sented with object constants in ACGs, are regarded as lexical items by our
definition. Every ACG encoding a TAG is lexicalized in our setting. This
gap comes from the high degree of abstractness and generality of ACGs; they
generate not only trees, but also other various types of data. Although it
might be possible to define the notion of “lexicalized ACGs” so that it com-
prehends the notion of lexicalized TAGs by Schabes et al., such a definition
would be reasonable only for tree ACGs. For the sake of generality, we adopt
the above definition for the term “lexicalized ACGs”.

Lemma 4.2. Let a type substitution σ : {o} → T ({o}) be defined as σ(o) =
str and a constant c have type str. For any α ∈ T ({o}), there is a closed

term Z
σ(α)
c of type σ(α) that contains exactly one occurrence of c.

Proof. Let Z
σ(α)
c = Zstr→σ(α)c for the linear combinator Zstr→σ(α) defined in

Definition 2.12.
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Recall that the proofs of Proposition 2.15 and Corollary 2.19 use ACGs
whose lexicons are just identities. Therefore, the results on the decidability
of the non-emptiness problem and on the generation of a non-semilinear
language hold for lexicalized ACGs. By Lemma 4.2, we can replace the ACG
in the proof of Proposition 2.15 with a lexicalized string ACG, and similarly
we see that there is a lexicalized string ACG in Glex

string(3, 2) that generates
a non-semilinear string language. However, the complexity of the universal
membership problem for ACGs is greatly improved in the case of lexicalized
ACGs.

Proposition 4.3. The universal membership problem for lexicalized ACGs
is NP-complete.

Proof. First we show that the problem is in NP. For a lexicalized ACG
G = 〈Σ0,Σ1,L , s〉, if L (M) �β P ∈ Λ(Σ1), the number of occurrences
of constants in M does not exceed the number of occurrences of constants
in P . Let P have m occurrences of constants. P ∈ O(G ) iff there are
abstract constants c1, . . . , cn for some n ≤ m and a combinator X of type
τ0(c1) → · · · → τ0(cn) → s such that L (Xc1 . . . cn) �β P . The size of a lin-
ear combinator X is bounded by a polynomial function of the size of its type
and the number of β-reduction steps needed to eliminate redexes of a linear
term is bounded by its size. This shows that the question “P ∈ O(G )?” is
in NP.

The NP-hardness can be derived from the NP-hardness of the implica-
tional fragment of intuitionistic linear logic (IMLL() [28]. For a given se-
quent S : A1, . . . , An ⇒ B of IMLL(, we define an ACG G S = 〈Σ0,Σ1,L , s〉
where Σ0 = 〈AS∪{s}, {a}, τ0〉, AS is the set of atomic formulas in the sequent
S, s 6∈ AS, τ0(a) = (A1 → · · · → An → B) → s, Σ1 = 〈{o}, {c}, {c 7→ str}〉,

L (p) = str for all p ∈ AS ∪ {s}, and L (a) = Z
L (τ0(a))
c , where Z

L (τ0(a))
c is

defined in Lemma 4.2. Then, S is provable in IMLL( iff c ∈ O(G S).

Salvati [43] has given some general results on the generative capacity and
complexity of lexicalized ACGs. Salvati has stated the above proposition in
a more refined form.

Proposition 4.4 (Salvati [43]). The universal membership problem for
Glex

tree(2, 2) is NP-complete.

A question that naturally suggests itself at this point is whether or not
there is a lexicalized ACG generating an NP-complete language. He has also
answered this question.1

1Yoshinaka and Kanazawa [61] have presented an example of a fourth-order lexicalized
ACG generating an NP-complete language independently from Salvati.
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Proposition 4.5 (Salvati [43]). There is a lexicalized ACG in Glex
tree(3, 1)

whose language is NP-complete.

Kanazawa’s theorem (Theorem 2.21) holds in a weaker form for lexicalized
string ACGs. We say that a class L of string languages is an AFL if L
is closed under union, concatenation, Kleene plus, ε-free homomorphism,
inverse homomorphism, and intersection with regular sets.

Theorem 4.6 (Kanazawa [26]). The class of string languages generated
by ACGs in Gˆlex(m,n) is a substitution-closed AFL for all m,n ≥ 2.

4.3 Lexicalization of Semilexicalized ACGs

Definition 4.7 (Salvati [43]). An ACG G = 〈Σ0,Σ1,L , s〉 is said to be
semilexicalized iff for every abstract constant a ∈ C0, either

• a is lexical, or

• τ0(a) is second-order.

Every lexicalized ACG and second-order ACG is semilexicalized by defi-
nition.

Salvati’s result on semilexicalized ACGs shows that the classes of semilex-
icalized ACGs and lexicalized ACGs have similar generative capacity and
complexity.

Proposition 4.8 (Salvati [43]). Every semilexicalized ACG generates a
language in NP. The universal membership problem for semilexicalized ACGs
is decidable.

In this section, we show that semilexicalized ACGs admit lexicalization.
Our goals are the following two theorems.

Theorem 4.9. For every semilexicalized ACG G ∈ G(m,n) with m ∈ {2, 3},
there are lexicalized ACGs G ′ ∈ G(m,n+1) and G ′′ ∈ G(m+1, n) such that

O(G ′) = O(G ′′) = {R ∈ O(G ) | R contains a constant }.

Theorem 4.10. For every semilexicalized ACG G ∈ G(m,n) with m 6∈
{2, 3}, there is a lexicalized ACG G ′ ∈ G(m,n) such that

O(G ′) = {R ∈ O(G ) | R contains a constant }.
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The above theorem for m = 1 is trivial. Each ACG in G(1, n) defines
just a finite language. Lexicalization of a first-order ACG is just eliminating
all the nonlexical constants from the abstract vocabulary.

Note that the notion of lexicalization in this thesis differs from Schabes
et al.’s one [47, 48], which is concerned with grammars that generate strings
through tree structures. They have defined the notion of lexicalization so
that it preserves not only the string language but also the tree language
yielding the string language. This definition requires grammars that should
be lexicalized to be finitely ambiguous, i.e., there is no string in the lan-
guage that has infinitely many trees yielding it in the tree language. Our
lexicalization method converts any semilexicalized ACG, which may be in-
finitely ambiguous in the sense that there are infinitely many λ-terms in the
abstract language that are mapped to the same object term modulo βη, into
a lexicalized ACG, where the original abstract language may be lost.

4.3.1 Basic Idea

This subsection explains our basic strategy for lexicalizing semilexicalized
ACGs.2

In the sequel, for an ACG G = 〈Σ0,Σ1,L , s〉, let us denote the set of
lexical constants by C

+
0 and the set of nonlexical constants by C

−
0 . We denote

the lexical part of the abstract vocabulary by Σ+
0 = 〈A0,C

+
0 , τ0〉, and the

nonlexical part by Σ−
0 = 〈A0,C

−
0 , τ0〉. An ACG is semilexicalized iff Σ−

0 is

second-order. For M,N ∈ Λ(Σ0), we write M
L

≈ N (or M ≈ N if L is clear
from the context) iff τ0(M) = τ0(N) and L (M) = L (N). For two sets Γ
and ∆ of terms, we write Γ ≈ ∆ iff for every M ∈ Γ, there is N ∈ ∆ with
M ≈ N and vice versa.

For eliminating nonlexical constants from a semilexicalized ACG G =
〈Σ0,Σ1,L , s〉, we construct a new ACG G ′ = 〈Σ′

0,Σ0,L
′, s′〉 such that

• for every A ∈ C ′
0, L ′(A) contains at least one lexical (w.r.t. L ) constant

a ∈ C
+
0 .

• O(G ′)
L

≈ A(G ).

Then, G ′′ = 〈Σ′
0,Σ1,L ◦ L ′, s′〉 is a lexicalized ACG by the first condition

and we see that O(G ′′) = O(G ) by the second condition.

2The idea presented in this subsection is based on a discussion among speakers, Ph. de
Groote, S. Salvati, R. Muskens, M. Kanazawa, and Yoshinaka, of the First Workshop on

Lambda Calculus and Formal Grammar held in 2005, Tokyo.
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For defining Σ′
0 and L ′, in fact it is enough to find an integer kG ∈ N

such that for every M ∈ A(G ), there is N ∈ A(G ) with N ≈M and

#
C

−
0

(N) ≤ kG · #
C

+
0

(N). (4.1)

Suppose that such an integer kG exists. Define Σ′
0 and L ′ : Σ′

0 → Σ0 by

A
′
0 = A0,

C
′
0 = { [[a, c1, . . . , ck]] | 0 ≤ k ≤ kG , a ∈ C

+
0 , ci ∈ C

−
0 }

τ ′0([[a, c1, . . . , ck]]) = (τ0(a) → τ0(c1) → · · · → τ0(ck) → s) → s

L
′(p) = p for p ∈ A0,

L
′([[a, c1, . . . , ck]]) = λw.wac1 . . . ck.

Then, for G ′ = 〈Σ′
0,Σ1,L ◦L ′, s〉, we see that O(G ) = O(G ′). The inclusion

O(G ′) ⊆ O(G ) is trivial, since for every P ∈ A(G ′) we have |L ′(P )|βη ∈
A(G ). We show the converse. For M ∈ A(G ), by the hypothesis we can
assume that

#
C

−
0

(M) ≤ kG · #
C

+
0

(M).

Let M ′ be obtained from M by replacing each occurrence of a constant by a
fresh variable so that

M = M ′[a1/x1, . . . , am/xm, c1/y1, . . . , cn/yn]

where each ai is lexical and ci is nonlexical. Since n ≤ kG · m, we can
partition the set {1, . . . , n} into m (possibly empty) subsets I1, . . . , Im such
that |Ii| ≤ kG . Let

P = [[a1,~cI1 ]](λx1~yI1.[[a2,~cI2]](λx2~yI2. . . . [[am,~cIm]](λxm~yIm.M
′) . . . ))

where ~yIi
is a sequence of variables yj with j ∈ Ii and ~cIi

is the corresponding
sequence of cj with j ∈ Ii. Then we have P ∈ A(G ′), L ′(P ) = M and thus
O(G ′) ⊆ O(G ). Note that the above construction increases the order of
the abstract vocabulary by 2. Although this construction will have to be
modified, explaining this basic idea should help the reader to understand our
lexicalization method.

How can we find that key integer kG ? In fact, if the given ACG G contains
no nullary or unary nonlexical constants, then kG is given as

kG = max{ |τ0(a)| | a ∈ C
+
0 }. (4.2)

Our algorithm first transforms the given semilexicalized ACG into an equiva-
lent one that satisfies the assumption that every nonlexical constant is neither



4.3 Lexicalization of Semilexicalized ACGs 53

nullary nor unary, but, we postpone the discussion of this transformation un-
til later. We here explain why the number given by (4.2) is enough under the
assumption. First we introduce the notion of a type occurrence in a term,
by explicitly displaying the type of every subterm occurring in a term, like
we do with variables. For instance, if M has type γ → δ and N has type γ,
then we write (Mγ→δNγ)δ instead of MN . If an atomic type p occurs in γ,
we have two corresponding occurrences of p in (M γ→δNγ)δ, one in the type
γ → δ of M and one in the type γ of N . If an atomic type q occurs in δ,
we have two corresponding occurrences of q, one in the type γ → δ of M
and one in the type δ of MN . We then draw links connecting corresponding
atomic type occurrences as

(Mγ[p]→δ[q]Nγ[p])δ[q]

where γ[p] specifies an occurrence of the type p in γ and likewise for δ[q].
For an abstraction term (λxγ .M δ)γ→δ, since M has exactly one occurrence
of the free variable xγ by the linearity, we can give links as follows

(λxγ.M δ[q][xγ[p]])γ[p]→δ[q]

where M [x] specifies the occurrence of the variable x inM . Though the above
two examples illustrate links of length just one, links form longer paths in
a term. Consequently, for instance, the occurrence of p in the type of c is
linked to the one in the type of y in

yo→(p→q)→rao(λxp.cp→qxp)p→q.

Here we suppress the types of some subterms for conciseness. Actually the
path illustrated above passes through the occurrence of p in (ya)(p→q)→r.
Note that in a linear term M , no path branches and every path has exactly
two end-points.

For conciseness, if the intended occurrence is clear, by “term” we mean
an appropriate occurrence of that term, and “type” we mean an appropriate
occurrence of that type.

Suppose that a β-normal term M is in A(G ). To compare the numbers
of occurrences of lexical and nonlexical constants, in other words, to make
sure that #

C
−
0

(M) ≤ kG ·#
C

+
0

(M) for kG defined as (4.2), we divide M into
one lexical part M0 and several nonlexical parts M1, . . . ,Mm so that

1. M = (λx1 . . . xm.M0)M1 . . .Mm,

2. M0 ∈ Λ(Σ+
0 ) and M0 is in long normal form,

3. Mi ∈ Λ(Σ−
0 ) and Mi is in long normal form for i ≥ 1,
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4. for each i ≥ 1, Mi has the form Mi = λ~zi.M
′
i , where ~zi consists of

variables of atomic types, and M ′
i also has an atomic type and contains

no variables other than ~zi,

5. m is as small as possible.

The last condition forbids M0 to have a subterm of the form xi
~N1(xj

~N2). If
M0 has such a subterm, we can decrease the number m of nonlexical parts
by replacing the subterm with xi,j

~N1
~N2 and combining two nonlexical parts

Mi and Mj as follows:

Mi,j = λ~z1~z2.Mi~z1(Mj~z2),

where |~z1| = | ~N1| and |~z2| = | ~N2|. Of course each Mi cannot be λz.z. For
instance, if

M ≡ b
(
λys

1y
s
2.c

(
ca(b(λys

0.y0))
)(

b(λys
3y

s
4.c(cy1y2)(cy3y4))

)
,

where a, b ∈ C
+
0 , c ∈ C

−
0 , τ0(a) = s, τ0(b) = (s → s) → s, and τ0(c) = s2 →

s, we let

M0 ≡ b
(
λys

1y
s
2.x

s3→s
1 a

(
b(λys

0.y0)
)(

b(λys
3y

s
4.x

s4→s
2 y1y2y3y4)

))
,

M1 ≡ λzs
1,1z

s
1,2z

s
1,3.c(cz1,1z1,2)z1,3,

M2 ≡ λzs
2,1z

s
2,2z

s
2,3z

s
2,4.c(cz2,1z2,2)(cz2,3z2,4).

Suppose that a nonlexical part Mi with i ≥ 1 has the form Mi =
λzp1

1 . . . zpn
n .M ′

i with τ0(Mi) = p1 → · · · → pn → q. M ′
i can be regarded

as a tree over C
−
0 ∪ {z1, . . . , zn}. Since M contains no nullary or unary non-

lexical constants, every constant in M ′
i has at least two arguments. If a tree

contains no node of rank 1, then the number of leaves is larger than the num-
ber of internal nodes. In Mi, every leaf node is a variable and every internal
node is a nonlexical constant. Thus, we have

1 ≤ #
C

−
0

(Mi) < n = |τ0(Mi)| − 1. (4.3)

On the other hand, the type of xi in M0 is τ0(Mi) = p1 → · · · → pn → q.
Now we are going to show that

{
the path from each pj in the type of xi

ends in the type of a lexical constant in M0.
(4.4)

Since M0 is in long normal form, the occurrence of xi in M0 has exactly
n arguments N1, . . . , Nn. Since the type pj of Nj is atomic, Nj is not an
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abstraction term. By the fifth condition, the head of Nj cannot be one of
the free variables x1, . . . , xm of M0. If the head of Nj is a lexical constant,

(4.4) holds. Otherwise, it is a bound variable w
~α0→pj

0 , where we find a path

x
p1→···→pj→···→pn→q

i N1 . . . Nj−1(w
~α0→pj

0
~N)Nj+1 . . . Nn.

The path goes to the type of the abstraction term L
(~α0→pj)→β0

0 that binds the
variable w0,

L0 =
(
λw

~α0→pj

0 .L[x
p1→···→pj→···→pn→q

i N1 . . . Ni−1(w
~α0→pj

0
~N)Ni+1 . . . Nn/z]

)(~α0→pj)→β0

Since M0 has the distinguished type s, L0 of type (~α0 → pj) → β0 cannot be
M0. Since M0 is β-normal, L0 cannot have an argument. Thus we can find
the smallest application term K0 which has L0 as a proper subterm. K0 has
the form

K0 = x~γ→(~β→(~α0→pj)→β0)→δ0~L~γ
1(λ~v

~β.L
(~α0→pj)→β0

0 ).

If x is a lexical constant, (4.4) holds. Otherwise, since all free variables
x1, . . . , xm of M0 have a second-order type, x must be a bound variable. Let

x = w
~γ→(~β→(~α0→pj)→β0)→δ0
1 and find the unique abstraction term that binds

the occurrence of w1. This way we can trace the path from the occurrence
of pj in the type of xi. If the path passes through the types of variables
xi, w0, w1, . . . in this order, then the type of wl+1 is more complicated than
that of xl, i.e., ord(τ0(wl+1)) ≥ ord(τ0(wl))+2. Since M0 is finite, eventually
we see that the path ends in a type occurrence of a lexical constant. We have
proved the statement (4.4).

Suppose that the path from pj in the type of xi ends in the type α[pj]
of a lexical constant a. When conversely we start tracing the path from the
occurrence pj in α[pj] = τ0(a), it cannot end in any other place than the
occurrence pj in the type p1 → · · · → pn → q of xi. Therefore,

∑

1≤i≤m

(
|τ0(xi)| − 1

)
≤

∑

a∈C
+
0

#a(M)|τ0(a)|.

By (4.3) and the definition (4.2) of the key integer kG , we have

#
C

−
0

(M) =
∑

1≤i≤m

#
C

−
0

(Mi) <
∑

1≤i≤m

(
|τ0(Mi)| − 1

)
=

∑

1≤i≤m

(
|τ0(xi)| − 1

)

≤
∑

a∈C
+
0

#a(M)|τ0(a)| ≤ #
C

+
0

(M) · max{ |τ0(a)| | a ∈ C
+
0 } = kG · #

C
+
0

(M).

Remark 4.11. We note some properties of a path here.
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• In xM1 . . .Mn where x is an atomic term, if a path starts from inside
Mi, then it cannot go into any other Mj with j 6= i.

• If both two end-points of a path are inside the types of some constants,
then one point is at a positive occurrence of the atomic type, and the
other is at a negative occurrence of the atomic type.

4.3.2 First Step

Our actual lexicalization algorithm consists of three steps: firstly we con-
vert G into an ACG satisfying the conditions in Definition 4.12, secondly
we eliminate nullary and unary nonlexical constants, and finally all the non-
lexical constants are eliminated. This section is devoted to the first step.
The treatment of remaining steps varies depending on the order of the given
semilexicalized ACG.

The conditions in Definition 4.12 talk about the nonlexical part of the
abstract vocabulary.

Definition 4.12 (Condition I & II). A semilexicalized ACG G = 〈Σ0,Σ1,
L , s〉 satisfies Condition I if for every second-order closed term M ∈ Λ(Σ−

0 ),
there is N ≈M such that

i. if τ0(M) is nullary, then N ∈ C
−
0 ,

ii. if τ0(M) is not nullary, then N contains no nullary nonlexical constants.

A semilexicalized ACG G satisfies Condition II, if for every second-order
closed term M ∈ Λ(Σ−

0 ), there is a β-normal term N such that N ≈M and

i. if τ0(M) is unary, then N ∈ C
−
0 ,

ii. if N contains a unary constant c ∈ C
−
0 , then the argument of c is a

bound variable (if any).

Lemma 4.13. Suppose that a semilexicalized ACG G satisfies Condition I.
Then for every M ∈ Λ(Σ0), there is a β-normal term N ∈ Λ(Σ0) such that
N ≈M and if a nullary nonlexical constant c occurs in N , then either

• N = c,

• c occurs as an argument of a lexical constant, or

• c occurs as an argument of a variable.
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Proof. Let us divide M into one lexical part M0 and several nonlexical parts
M1, . . . ,Mm so that

1. M = (λx1 . . . xm.M0)M1 . . .Mm,

2. M0 ∈ Λ(Σ+
0 ) and M0 is in long normal form,

3. Mi ∈ Λ(Σ−
0 ) and Mi is in long normal form for i ≥ 1,

4. for each i ≥ 1, Mi has the form Mi = λ~zi.M
′
i , where ~zi consists of

variables of atomic types, and M ′
i also has an atomic type and contains

no variables other than ~zi,

5. m is as small as possible.

By Condition I, there are N1, . . . , Nm such that Ni ≈ Mi and either Ni is a
nullary nonlexical constant or Ni contains no nullary nonlexical constants.
Let N = |M0[N1/x1, . . . , Nm/xm]|β and suppose that Nj is a nullary nonlex-
ical constant c. If M0 = xj, then N = Nj = c. If M0 6= xj, there is M ′

0 and

an atomic term x such that M0 = M ′
0[x~L1xj/z], since xj has an atomic type.

Since M0 has no subterm of the form xi
~N1(xj

~N2), x is either a lexical con-
stant or a variable other than x1, . . . , xm. In N , Nj appears as an argument
of x.

Similarly we have the following lemma.

Lemma 4.14. Suppose that a semilexicalized ACG G satisfies Condition II.
Then for every M ∈ Λ(Σ0), there is a β-normal term N ∈ Λ(Σ0) such that
N ≈ M and if a unary nonlexical constant c occurs in a subterm cN ′ of N ,
then the head of N ′ is either a lexical constant or a variable.

Note that Condition II-i ensures that for every atomic type p, there is a
unary nonlexical constant ep ∈ C

−
0 of type p → p which is mapped to the

identity λxL (p).x.

First we present the procedure for converting a semilexicalized ACG
G = 〈Σ0,Σ1,L , s〉 into an equivalent ACG G ′ = 〈Σ′

0,Σ1,L
′, s〉 satisfying

Condition I in Definition 4.12. We define the new abstract vocabulary Σ′
0

and lexicon L ′ as extensions of Σ0 and L by adding new nonlexical con-
stants. This procedure is performed on the nonlexical part Σ−

0 of the abstract
vocabulary and we ignore the lexical part Σ+

0 .
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Let ΓG ⊆ A0 × {P ∈ Λ(Σ1) | P is a combinator } be defined as follows:

Γ0 = ∅,

Γn+1 = Γn ∪ { 〈 q, |L (c)P1 . . . Pm|βη 〉 |

c ∈ C
−
0 , τ0(c) = p1 → · · · → pm → q, 〈pi, Pi〉 ∈ Γn },

ΓG =
⋃

n≥1

Γn.

Recall that for a fixed type, only finitely many linear combinators of that
type exist (modulo βη). Thus, ΓG is finite, because τ1(P ) = L (p) for every
element 〈p, P 〉 ∈ ΓG . Obviously each Γn can be computed effectively. If
Γn = Γn+1, then Γn = Γn+k for all k ≥ 0 and thus ΓG = Γn. Therefore,
ΓG can be computed effectively. Moreover, immediately by the construction
of ΓG , for every variable-free term M ∈ Λ(Σ−

0 ) of an atomic type, we have
〈τ0(M), |L (M)|βη〉 ∈ ΓG .

To satisfy Condition I-i, for each 〈p, P 〉 ∈ ΓG , let us put the following
lexical entries3 into C ′

0

〈[[p, P ]], p, P 〉.

Next, for Condition I-ii, we add the following lexical entries

〈[[~p→ q, |λ~x.L (c)P1 . . . Pm|βη]], ~p→ q, λ~x.L (c)P1 . . . Pm〉

where

• c ∈ C
−
0 ,

• τ0(c) = p1 → · · · → pm → q,

• either 〈pi, Pi〉 ∈ ΓG or Pi = xi,

• ~p and ~x are the subsequences of p1 . . . pm and x1 . . . xm, respectively,
such that pi is in ~p iff xi is in ~x iff Pi = xi.

We obtain the following lemma.

Lemma 4.15 (Condition I). Every semilexicalized ACG G ∈ G(m,n) has
an equivalent semilexicalized ACG G ′ ∈ G(m,n) that satisfies Condition I in
Definition 4.12.

3Recall that a lexical entry of an ACG is a triple consisting of an abstract constant, its
type, and the assigned object term.
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Proof. Let G ′ be the ACG obtained from an ACG G by the above procedure.
Since G ′ is an extension of G , clearly O(G ) ⊆ O(G ′) holds. Moreover since
the role of a new constant can be played by finitely many nonlexical constants
of G , the converse O(G ′) ⊆ O(G ) holds. It is clear that for every p ∈ A0

and P ∈ Λ(Σ1) the following three are equivalent:

• there is a variable-free term L ∈ Λ(Σ−
0 ) of type p with |L (L)|βη ≡ P ,

• 〈p, P 〉 ∈ ΓG ,

• there is a nullary nonlexical constant of type p in C
′−
0 that is mapped

to P .

We show that G ′ satisfies Condition I. Since for every M ∈ Λ(Σ′−
0 ), there is

L ∈ Λ(Σ−
0 ) such that τ0(L) = τ ′0(M) and L (L) = L ′(M), it is enough to

show that for every closed second-order term L ∈ Λ(Σ−
0 ), there is N ∈ Λ(Σ′−

0 )
such that

• τ0(L) = τ ′0(N) and L (L) = L ′(N),

i. if τ0(L) is nullary, then N ∈ C
′−
0 ,

ii. if τ0(L) is not nullary, then N contains no nullary nonlexical constants.

Condition I-i is satisfied by the above equivalence relation. We show that
Condition I-ii is satisfied by induction on #

C
−
0

(L). Suppose that a closed

second-order term L ∈ Λ(Σ−
0 ) has the form

L = λ~y.cL1 . . . Lm

with ~y 6= ε for a nonlexical constant c of type p1 → · · · → pm → q. Let ~yi

be the subsequence of ~y whose elements appear in Li and I = { i | ~yi 6= ε }.
Note that I 6= ∅ by ~y 6= ε. By the induction hypothesis and Condition I-i,
for each i ∈ {1, . . . , m} we have Ni ∈ Λ(Σ′−

0 ) such that

• τ ′0(Ni) = τ0(λ~yi.Li) and L ′(Ni) = L (λ~yi.Li)

• Ni ∈ C
′−
0 (and thus 〈pi, |L

′(Ni)|βη〉 ∈ ΓG ) if i 6∈ I,

• Ni contains no nullary constants if i ∈ I,

By the definition, we have the constant [[~pI → q, P ]] where

• P ≡ |λ~xI .L (c)P1 . . . Pm|βη,

• Pi = L ′(Ni) for i 6∈ I,
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• Pi = xi for i ∈ I,

• ~pI and ~xI are the subsequences of p1 . . . pm and x1 . . . xm respectively
such that pi is in ~pI iff xi is in ~xI iff i ∈ I.

Thus, for

N = λ~y.[[~p→ q, P ]]〈Ni~yi〉i∈I ∈ Λ(Σ′−
0 ),

we have τ ′0(N) = τ0(L) and L ′(N) = L (L). Since I 6= ∅, [[~pI → q, P ]] is not
nullary. N contains no nullary constants.

The procedure for converting a semilexicalized ACG G into an equivalent
ACG satisfying Condition II in Definition 4.12 is similar to the procedure
for Condition I. We define an extension G ′ of G ′ assuming that the ACG
G satisfies Condition I. Let ∆G ⊆ (A0 → A0) × {P ∈ Λ(Σ1) | P is a
combinator } be defined as follows:

∆0 = { 〈p→ p, λxL (p).x〉 | p ∈ A0 }

∆n+1 = ∆n ∪ { 〈 p→ r, |λx.L (c)(Px)|βη 〉 | c ∈ C
−
0 , τ0(c) = q → r,

〈p→ q, P 〉 ∈ ∆n for some q ∈ A0 }

∆G =
⋃

n≥0

∆n

By a similar reason to the reason for the computability of ΓG , ∆G can be
computed effectively.

To satisfy Condition II-i, for each 〈p → q, P 〉 ∈ ∆G , we add the lexical
entries

〈[[p→ q, P ]], p→ q, P 〉.

To satisfy Condition II-ii, furthermore we add the following constants

[[p1 → · · · → pm → r, |λx1 . . . xm.P0(L (c)x1 . . . xm)|βη]]

where

• c ∈ C
−
0 ,

• τ0(c) = p1 → · · · → pm → q,

• 〈q → r, P0〉 ∈ ∆G .

Let τ ′0([[α, P ]]) = α and L ′([[α, P ]]) = P . This way, we obtain the following
lemma.
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Lemma 4.16 (Condition II). Every semilexicalized ACG G ∈ G(m,n) has
an equivalent semilexicalized ACG G ′ ∈ G(m,n) that satisfies Conditions I
and II in Definition 4.12.

Proof. Let G ′ be the ACG obtained by the above procedure from an ACG
G , which satisfies Condition I. It is clear that O(G ) = O(G ′) and for every
p, q ∈ A0 and P ∈ Λ(Σ1) the following three are equivalent:

• there is a closed term M ∈ Λ(Σ−
0 ) of type p→ q with L (M) ≡ |P |βη,

• 〈p→ q, P 〉 ∈ ∆G ,

• there is a unary nonlexical constant of type p → q in C
′−
0 that is

mapped to P .

This equivalence relation entails that G ′ satisfies Condition II-i. To prove
that G ′ satisfies Condition II, it is enough to show that for every closed term
L ∈ Λ(Σ−

0 ) of type ~p→ r with |~p| ≥ 2, there is N ∈ Λ(Σ′−
0 ) such that

• τ0(L) = τ ′0(N) and L (L) = L ′(N),

• if N contains a unary constant c ∈ C
−
0 , then the argument of c is a

bound variable.

We show that Condition II-ii is satisfied by induction on #
C

−
0

(L). Let a

second-order closed term L ∈ Λ(Σ−
0 ) have the form L = λ~y.d~L where |~y| ≥ 2

and τ0(d~L) ∈ A0. Since G satisfies Condition I, we can assume that L

contains no nullary constants. If |~L| ≥ 2, the lemma holds immediately by

the induction hypothesis. Suppose that |~L| = 1. L has the form

L = ~y.d1(. . . (dn(cL1 . . . Lm)) . . . )

where d1 = d, all di are unary, and c is m-ary for some m ≥ 2. By |~y| ≥ 2,
such a constant c occurs in L. Let τ0(c) = p1 → · · · → pm → q and

P0 = L (λzq.d1(. . . (dnz) . . . )).

Since 〈q → r, P0〉 ∈ ∆G for q → r = τ0(λz.d1(. . . (dnz)), C ′
0 has the constant

e = [[p1 → · · · → pm → r, |λx1 . . . xm.P0(L (c)x1 . . . xm)|βη]].

Let Ni ∈ Λ(Σ′−
0 ) be obtained by applying the induction hypothesis to λ~yi.Li

where ~yi is the subsequence of ~y whose elements appear in Li. Then, the
following N satisfies the condition:

N = λ~y.e(N1~y1) . . . (Nm~ym).
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4.3.3 Second-Order Case

Though Yoshinaka and Kanazawa [61] have already stated that every second-
order ACG has an equivalent lexicalized second-order ACG modulo combi-
nators, the proof of that paper is in error. This subsection presents a correct
lexicalization method for second-order ACGs. Another correction is shown
by Kanazawa and Yoshinaka [27].

Elimination of Nullary and Unary Nonlexical Constants

Suppose that a given second-order ACG satisfies Conditions I and II of Defi-
nition 4.12. We eliminate nullary (resp. unary) nonlexical constants in a way
similar to the procedure to make an second-order ACG satisfy Condition I-ii
(resp. Condition II-ii). Let us add the following lexical entries to G :

〈[[λ~x.aP1 . . . Pm]], ~p→ q, L (λ~x.aP1 . . . Pm)〉

where

• a ∈ C
+
0 ,

• τ0(a) = p1 → · · · → pm → q and τ0(Pi) = pi,

• either Pi ∈ C
−
0 or Pi = xi,

• pi is in ~p iff xi is in ~x iff Pi = xi.

and

〈[[λx1 . . . xm.c(bx1 . . . xm)]], p1 → · · · → pm → r, L (λx1 . . . xm.c(bx1 . . . xm))〉

where

• b ∈ C
+
0 ,

• τ0(b) = p1 → · · · → pm → q,

• c ∈ C
−
0 of type q → r.

This way, we obtain the following lemma.

Lemma 4.17. Every ACG G belonging to G(2, n), has an equivalent (mod-
ulo combinators) ACG G ′ ∈ G(2, n) which contains no nullary or unary
nonlexical constants.
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Proof. Let G ′ be the ACG obtained from a second-order ACG G by the above
procedure. It is enough to show by induction on M ∈ Λ(Σ0) − Λ(Σ−

0 ) that
if a variable-free term M has an atomic type, then there is N ∈ Λ(Σ0) such
that N ≈ M and N contains no nullary or unary constants. The proof for
Lemma 4.16 can be applied to this claim with few modification. Therefore,
when we eliminate all the nullary and unary nonlexical constants from G ′,
the object language does not shrink other than combinators.

Elimination of Nonlexical Constants

If a second-order ACG G ∈ G(2, n) has no nullary or unary nonlexical con-
stants, then every M ∈ A(G ) contains more occurrences of lexical constants
than those of nonlexical constants. Therefore, as we have described in Sec-
tion 4.3.1, the equation (4.1) holds for kG = 1. Let G ′ = 〈Σ′

0,Σ1,L ◦L ′, s〉 ∈
Glex(4, n) where

x ∈ C ′
0 τ ′0(x) L ′(x) for

a τ0(a) a a ∈ C
+
0

Aac (τ0(c) → τ0(a) → s) → s λx.xca a ∈ C
+
0 , c ∈ C

−
0

However, this construction is not satisfactory because the order of G ′ is four.
A naive alternative strategy would be to define τ ′0 and L ′ so that

• For each variable-free term M ∈ Λ(Σ0) of an atomic type, there is
P ∈ Λ(Σ′

0) such that L ′(P ) = M .

This idea, however, does not work. Suppose that M = cM1 . . .Mk for a
nonlexical constant c ∈ C

−
0 and we have P1, . . . , Pk ∈ Λ(Σ′

0) with L ′(Pi) =
Mi by the induction hypothesis. To construct M from L ′(P1), . . . ,L

′(Pk),
exactly one extra nonlexical constant c is required, but no lexical constant
is needed. It is impossible if G ′ is lexicalized. We should use a lexical
constant together whenever we use a nonlexical constant. Rather, consider
the following statement:

? For each variable-free term M ∈ Λ(Σ0) of an atomic type, there are
P ′ ∈ Λ(Σ′

0) and a ∈ C
+
0 such that τ0(a) ∈ A0 and L ′(P ′)a = M .

Suppose that M = cM1 . . .Mk for c ∈ C
−
0 and we have L ′(P ′

i )ai = Mi. Note
that k ≥ 2, since a nonlexical constant is neither nullary nor unary. Then,

M = c(L ′(P ′
1)a1) . . . (L

′(P ′
k)ak)

=
(
λx1 . . . xkz.cx1 . . . xk−2(xk−1ak−1)(xkz)

)

(L ′(P ′
1)a) . . . (L

′(P ′
k−2)ak−2)L

′(P ′
k−1)L

′(P ′
k)ak.
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If we have a constant A ∈ C ′
0 such that

L
′(A) = λx1 . . . xkz.cx1 . . . xk−2(xk−1ak−1)(xkz),

then for P ′ = Aac(P
′
1a1) . . . (P

′
k−2ak−2)P

′
k−1P

′
k, we have M = L ′(P ′)ak−1.

That is, we can use the statement (?) as an induction hypothesis.

Proposition 4.18. Let G be a second-order ACG that contains no nullary
or unary nonlexical constants. For the following third-order ACG G ′ =
〈Σ′

0,Σ0,L
′, s〉 with L ′(p) = p, we have O(G ′) = A(G ):

x ∈ C ′
0 τ ′0(x) L ′(x)

a τ0(a) a

Dacq′
~t→ (p′ → p) → (q′ → q) → q → r λ~w~txp′→pyq′→qzq′ .c~w(xa)(yz)

where a ∈ C
+
0 , c ∈ C

−
0 , τ0(a) = p′, τ0(c) = ~t→ p→ q → r, and q′ ∈ A0.

Proof. It is enough to prove the above statement (?).
Basis. If M = a ∈ C

+
0 , let P ′ = λxτ0(a).x.

Step. If M = cM1 . . .Mk for c ∈ C
−
0 , we can get P ′ that satisfies (?) as

discussed above.
Suppose that M = bM1 . . .Mk for b ∈ C

+
0 and k ≥ 1. By the induction

hypothesis, we have P ′
1, . . . , P

′
k ∈ Λ(Σ′

0) and a1, . . . , ak ∈ C
+
0 such that Mi =

L ′(P ′
i )ai for each i ∈ {1, . . . , k}. Let

P ′ = λz.b(P ′
1a1) . . . (P

′
k−1ak−1)(P

′
kz).

Corollary 4.19. For every second-order ACG G ∈ G(2, n), there is a third-
order ACG G ′ ∈ Glex(3, n) such that O(G ′) = {P ∈ O(G ) | P contains a
constant }.

This solution is not yet satisfactory, because the lexicalized ACG is third-
order.

If every P ∈ Λ(Σ′
0) such that L ′(P ) = M for M ∈ A(G ) can be

constructed with application only, we can reduce the order of the abstract
vocabulary to two. Since the usage of variables and λ-abstraction in the
proof of Proposition 4.18 is tightly limit, we can modify G ′ into G ′′ so
that P ′ in the statement (?) can be constructed only by application. Let
G ′′ = 〈Σ′′

0,Σ0,L
′′, s〉 consist of the following lexical entries:

x ∈ C ′′
0 τ ′′0 (x) L ′′(x)

ep p→ p λxp.x
a τ0(a) a

Dacq′
~t→ (p′→ p) → (q′→ q) → q′ → r λ~w~txp′→pyq′→qzq′ .c~w(xa)(yz)

bq′
~t→ (q′ → q) → q′ → r λ~w~tyq′→qzq′ .b~w(yz)

(4.5)



4.3 Lexicalization of Semilexicalized ACGs 65

where a ∈ C
+
0 , τ0(a) ∈ A0, c ∈ C

−
0 , τ0(c) = ~t → p → q → r, b ∈ C

+
0 ,

τ0(b) = ~t→ q → r.
Then, replacing each subtype (p → q) with a new abstract atomic type
[p → q]4, we get a second-order ACG. Although L ′′(ep) contains no lexi-
cal constants with respect to L and thus ep is nonlexical with respect to
L ◦ L ′′, we can eliminate this nonlexical constant ep in the same way as
Lemma 4.17. This way, we obtain the following definition, where a further
minor modification is added for the compactness of the new grammar.

Definition 4.20. Let a second-order ACG G = 〈Σ0,Σ1,L , s〉 ∈ G(2, n)
contain no nullary or unary nonlexical constants. We define a second-order
ACG G l = 〈Σ′

0,Σ1,L ◦ L ′, s〉 ∈ G(2, n+ 1) (L ′ : Σ′
0 → Σ0) by

A
′
0 = A0 ∪ { [p→ q] | p, q ∈ A0 }

L
′(p) = p for p ∈ A0, and L

′([p→ q]) = p→ q for p, q ∈ A0,

x ∈ C ′
0 τ ′0(x) L ′(x)

[[a]] p a

[[ar]] [p→ r] → r λxp→r.xa
for a ∈ C

+
0 , τ0(a) = p ∈ A0, r ∈ A0,

[[b]] ~t→ [q → r] λ~w~tzq.b~wz

[[bp]] ~t→ [p→ q] → [p→ r] λ~w~typ→qzp.b~w(yz)

for b ∈ C
+
0 , τ0(b) = ~t→ q → r, p ∈ A0,

Aac
~t→ [q → r] λ~w~tzq.c~waz

for a ∈ C
+
0 , τ0(a) = p, c ∈ C

−
0 , τ0(c) = ~t→ p→ q → r,

Bacq′
~t→ [q′ → q] → [q′ → r] λ~w~tyq′→qzq′ .c~wa(yz)

for a ∈ C
+
0 , τ0(a) = p, c ∈ C

−
0 , τ0(c) = ~t→ p→ q → r, q′ ∈ A0,

Cac
~t→ [p′ → p] → [q → r] λ~w~txp′→pzq.c~w(xa)z

for a ∈ C
+
0 , τ0(a) = p′, c ∈ C

−
0 , τ0(c) = ~t→ p→ q → r,

Dacq′
~t→ [p′ → p] → [q′ → q] → [q′ → r] λ~w~txp′→pyq′→qzq′ .c~w(xa)(yz)

for a ∈ C
+
0 , τ0(a) = p′, c ∈ C

−
0 , τ0(c) = ~t→ p→ q → r, q′ ∈ A0.

Lemma 4.21. O(G l) = O(G ).

4For instance, we replace Dacq′ with two new constants that have different types ~t →
[p′→ p] → [q′→ q] → q′ → r and ~t → [p′→ p] → [q′→ q] → [q′ → r].
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Proof. The inclusion O(G l) ⊆ O(G ) is trivial. To see the converse O(G ) ⊆
O(G l), we show that the following claim by induction on M .

For every variable-free term M ∈ Λ(Σ0) of an atomic type r, there is
P ∈ Λ(Σ′

0) of type r such that L ′(P ) = M . Moreover, if M 6∈ C0, there
are P ′ ∈ Λ(Σ′

0) and a ∈ C
+
0 such that τ0(a) = p, τ ′0(P

′) = [p → r], and
L ′(P ′)a = M .

Basis. M is a constant. If M = a ∈ C0, then a ∈ C
+
0 , since G has no

nullary nonlexical constants. Let P = [[a]] ∈ C ′
0.

Step. Case 1. The head of M is a lexical constant b ∈ C
+
0 . Let M =

bM1 . . .MkN , τ0(b) = t1 → · · · → tk → q → r, τ0(Mi) = ti, and τ0(N) = q.
By the induction hypothesis, there are P1, . . . , Pk ∈ Λ(Σ′

0) such that τ ′0(Pi) =
ti, and L ′(Pi) = Mi.

Case 1.1. N = a ∈ C
+
0 . By the definition, there are constants [[b]], [[ar]] ∈

C ′
0 such that

τ ′0([[b]]) = t1 → · · · → tk → [q → r], L
′([[b]]) = λwt1

1 . . . w
tk
k z

q.bw1 . . . wkz,

τ ′0([[ar]]) = [q → r] → r, L
′([[ar]]) = λxq→r.xa.

Let P ′ = [[b]]P1 . . . Pk and P = [[ar]]P
′. We have τ0(P

′) = [q → r], τ0(P ) = r,
and

L
′(P ) = L

′(P ′)a = (λzq.bM1 . . .Mkz)a = bM1 . . .MkN = M .

Case 1.2. N 6∈ C0. By the induction hypothesis, there are Q′ ∈ Λ(Σ′
0)

and a ∈ C
+
0 such that τ ′0(Q

′) = [p→ q], τ0(a) = p, and L ′(Q′)a = N . There
is a constant [[bp]] ∈ C ′

0 such that

τ ′0(bp) = t1 → · · · → tk → [p→ q] → [p→ r],

L
′(bp) = λwt1

1 . . . w
tk
k y

p→qzp.bw1 . . . wk(yz)

Let P ′ = [[bp]]P1 . . . PkQ
′ and P = [[ar]]P

′. We have τ ′0(P
′) = [p → r],

τ ′0(P ) = r, and

L
′(P ) = L

′(P ′)a = bM1 . . .Mk(L
′(Q′)a) = bM1 . . .MkN = M .

Case 2. The head of M is a nonlexical constant c ∈ C
−
0 . Let M =

cM1 . . .MkN1N2 and τ0(c) = t1 → · · · → tk → p→ q → r. By the induction
hypothesis, there are P1, . . . , Pk such that τ ′0(Pi) = ti and L ′(Pi) = Mi.

Case 2.1. N1 = a ∈ C
+
0 and N2 = b ∈ C

+
0 . There is a constant Aac ∈ C ′

0

such that

τ ′0(Aac) = t1 → · · · → tk → [q → r],

L
′(Aac) = λwt1

1 . . . w
tk
k z

q.cw1 . . . wkaz.
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Let P ′ = AacP1 . . . Pk and P = [[br]]P
′. We have τ ′0(P

′) = [q → r], τ ′0(P ) = r,
and

L
′(P ) = L

′(P ′)b = cM1 . . .Mkab = M .

Case 2.2. N1 = a ∈ C
+
0 and N2 6∈ C

+
0 . By the induction hypothesis, we

have Q′
2 of type [q′ → q] such that L ′(Q′

2)b = N2 for some b ∈ C
+
0 of type

q′. There is a constant Bacq′ ∈ C ′
0 such that

τ ′0(Bacq′) = t1 → · · · → tk → [q′ → q] → [q′ → r]

L
′(Bacq′) = λwt1

1 . . . w
tk
k y

q′→qzq′ .cw1 . . . wka(yz).

Let P ′ = Bacq′P1 . . . PkQ
′
2 and P = [[br]]P

′. we have τ ′0(P
′) = [q′ → r],

τ ′0(P ) = r and

L
′(P ) = L

′(P ′)b = cM1 . . .Mka(L
′(Q′

2)b) = cM1 . . .MkN1N2 = M .

Case 2.3. N1 6∈ C
+
0 and N2 = b ∈ C

+
0 . By the induction hypothesis, we

have Q′
1 of type [p′ → p] such that L ′(Q′

1)a = N1 for some a ∈ C
+
0 of type

p′. There is a constant Cac ∈ C ′
0 such that

τ ′0(Cac) = t1 → · · · → tk → [p′ → p] → [q → r],

L
′(Cac) = λwt1

1 . . . w
tk
k x

p′→pzq.cw1 . . . wk(xa)z.

For P ′ = CacP1 . . . PkQ
′
1 and P = [[br]]P

′, we have τ ′0(P
′) = [q → r], τ ′0(P ) = r

and

L
′(P ) = L

′(P ′)b = cM1 . . .Mk(L
′(Q′

1)a)b = cM1 . . .MkN1N2 = M .

Case 2.4. N1 6∈ C
+
0 and N2 6∈ C

+
0 . By the induction hypothesis, we have

Q′
1, Q

′
2 ∈ Λ(Σ′

0) and a, b ∈ C
+
0 such that

τ ′0(Q
′
1) = [p′ → p], L

′(Q′
1)a = N1, τ0(a) = p′,

τ ′0(Q
′
2) = [q′ → q], L

′(Q′
2)b = N2, τ0(b) = q′.

By the definition of G l, there is a constant Dacq′ ∈ C ′
0 such that

τ ′0(Dacq′) = t1 → · · · → tk → [p′ → p] → [q′ → q] → [q′ → r],

L
′(Dacq′) = λwt1

1 . . . w
tk
k x

p′→pyq′→qzq′ .cw1 . . . wk(xa)(yz).

Let P ′ = Dacq′P1 . . . PkQ
′
1Q

′
2 and P = [[br]]P

′. We have τ ′0(P
′) = [q′ → r],

τ ′0(P ) = r and

L
′(P ) = L

′(P ′)b = cM1 . . .Mk(L
′(Q′

1)a)(L
′(Q′

2)b) = M .

Theorem 4.22. For every second-order ACG G ∈ G(2, n), there is a lexi-
calized second-order ACG G ′ ∈ G(2, n+ 1) such that

O(G ′) = {R ∈ O(G ) | R contains a constant }.
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4.3.4 Fourth or Higher-Order Case

As we have mentioned at the beginning of Section 4.3.2, we start this section
with elimination of nullary and unary nonlexical constants.

Elimination of Nullary and Unary Nonlexical Constants

Lemma 4.23 (Elimination of Nullary Nonlexical Constants). For
every semilexicalized ACG G ∈ G(m,n), we can find a semilexicalized ACG
G ′ ∈ G(max{3, m}, n) such that G ′ contains no nullary nonlexical constants
and

O(G ′) = {R ∈ O(G ) | R contains a constant }.

Proof. By Lemma 4.16, we can assume that a given ACG G = 〈Σ0,Σ1,L , s〉
satisfies Conditions I and II in Definition 4.12. We let an ACG G ′ =
〈Σ′

0,Σ1,L
′, s〉 have the following lexical entries, where A ′

0 = A0 and L ′(p) =
L (p) for p ∈ A0.

• 〈c, τ0(c), L (c)〉 for all c ∈ C
−
0 unless τ0(c) ∈ A0,

• 〈[[M ]], τ0(M), L (M)〉 for each M of the form

M = λx1 . . . xn.a(x1c1,1 . . . c1,m1) . . . (xncn,1 . . . cn,mn)

where a ∈ C
+
0 , τ0(a) = γ1 → · · · → γn → q, ci,j ∈ C

−
0 , τ0(ci,j) = pi,j,

τ ′0(xi) = pi,1 → · · · → pi,mi
→ γi and 0 ≤ mi ≤ |γi|.

Since the order of the type of the bound variable xi in the above M is

ord(pi,1 → · · · → pi,mi
→ γi) =

{
max{2, ord(γi)} if mi ≥ 1

ord(γi) if mi = 0,

we have ord(τ ′0([[M ]])) ≤ max{3, ord(τ0(a))}. Thus, G ′ ∈ G(max{3, m}, n) if
G ∈ G(m,n). Moreover, G ′ also satisfies Condition II.

[O(G ′) ⊆ {R ∈ O(G ) | R contains a constant }]
The inclusion O(G ′) ⊆ O(G ) is obvious. We show that O(G ′) contains

no combinators. Since every nonlexical constant c ∈ C
′−
0 has non-nullary

second-order type, if P ∈ Λ(Σ′−
0 ) is closed, it cannot have an atomic type, in

particular, the distinguished type. Thus if P ∈ A(G ′), it contains a lexical
constant.

[{R ∈ O(G ) | R contains a constant } ⊆ O(G ′)]
We say that an occurrence of a nullary nonlexical constant is linked to an

occurrence of a lexical constant if the path which starts from the type of the
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occurrence of the nullary nonlexical constant ends in a subtype of the type of
the occurrence of the lexical constant. A term M ∈ Λ(Σ0) is said to satisfy
the linking condition if for every occurrence of a nullary nonlexical constant,
there is an occurrence of a lexical constant to which the occurrence of the
nullary nonlexical constant is linked.

In fact, every M ∈ A(G ) − Λ(Σ−
0 ) has an equivalent term M ′ ≈ M that

satisfies the linking condition. Since G satisfies Condition I in Definition 4.12,
we can assume that if a nullary constant c occurs in M , the occurrence is as
an argument of a lexical constant or a bound variable, by Lemma 4.13. If the
functor is a lexical constant a, then c is linked to the lexical constant a. If the
functor is a bound variable, then as we have described in Section 4.3.1, we
can trace the path until it ends in a subtype of the type of a lexical constant.
Thus, here we assume that M satisfies the linking condition.

By induction on the size of M , we show that for every long normal term
M ∈ Λ(Σ0) that satisfies the linking condition, there is P ∈ Λ(Σ′

0) with
τ ′0(P ) = τ0(M) and L ′(P ) = L (M).

Case 1. Suppose that M is of the form M = λx.M ′. Since M satisfies the
linking condition, also M ′ satisfies the linking condition. By the induction
hypothesis, we have P ′ ∈ Λ(Σ′

0) with τ ′0(P
′) = τ0(M

′) and L ′(P ′) = L (M ′).
For P = λx.P ′ ∈ Λ(Σ′

0), we have τ ′0(P ) = τ0(M) and L ′(P ) = L (M).
Case 2. If M is of the form M = c for a nullary nonlexical constant c,

then M cannot satisfy the linking condition.
Case 3. If M is of the form M = xM1 . . .Mn for some variable or non-

nullary nonlexical constant x, then each Mi satisfies the linking condition
(see Remark 4.11). By the induction hypothesis, there is Pi ∈ Λ(Σ′

0) with
τ ′0(Pi) = τ0(Mi) and L ′(Pi) = L (Mi). For P = xP1 . . . Pn, we have τ ′0(P ) =
τ0(M) and L ′(P ) = L (M).

Case 4. The remaining case is that M is of the form

M = aM1 . . .Mn

for some lexical constant a ∈ C
+
0 of type γ1 → · · · → γn → q. For each i ∈

{1, . . . , n}, let M ′
i be obtained from Mi by replacing with fresh variables ~zi all

the occurrences of nullary nonlexical constants linked to the head occurrence
of a, so that M ′

i satisfies the linking condition. By the induction hypothesis,
there is P ′

i such that τ ′0(P
′
i ) = τ0(M

′
i) and L ′(P ′

i ) = L (M ′
i). Let ~ci be such

that
Mi = M ′

i [~ci/~zi].

By the property of paths, |~ci| ≤ |γi|. By the definition of G ′, we have
[[N ]] ∈ C ′

0 for
N = λx1 . . . xn.a(x1~c1) . . . (xn~cn).
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Thus, for P = [[N ]](λ~z1.P
′
1) . . . (λ~zn.P

′
n), we have τ ′0(P ) = τ0(M) and

L
′(P ) = L

(
a(M ′

1[~c1/~z1]) . . . (M
′
m[~cn/~zn])

)
= L (M).

Lemma 4.24 (Elimination of Unary Nonlexical Constants). For ev-
ery semilexicalized ACG G ∈ G(m,n), we can find a semilexicalized ACG
G ′ ∈ G(max{4, m}, n) such that G ′ contains no nullary or unary nonlexical
constants and

O(G ′) = {R ∈ O(G ) | R contains a constant }.

Proof. By Lemmas 4.16 and 4.23, we assume that G contains no nullary non-
lexical constants and satisfies Condition II in Definition 4.12. O(G ) contains
no combinators.

We let an ACG G ′ have the following lexical entries:

• 〈c, τ0(c), L (c)〉 for all c ∈ C
−
0 unless τ0(c) is unary,

• 〈[[M ]], τ0(M), L (M)〉 for each M of the form

M = λx
α1,1→···→α1,m1→γ1

1 . . . xαn,1→···→αn,mn→γn

n .c0(a(x1~c1) . . . (xn~cn))

where a ∈ C
+
0 , τ0(a) = γ1 → · · · → γn → q, ~ci = ci,1 . . . ci,mi

, mi ≤ |γi|,
and each ci,j is a nonlexical constant of unary type αi,j.

Since the order of the type of the bound variables xi in M is

ord(αi,1 → · · · → αi,mi
→ γi)

= max{ ord(αi,j) + 1, ord(γi) | 1 ≤ j ≤ mi } ≤ max{3, ord(γi)},

we have ord(τ ′0([[M ]])) ≤ max{4, ord(τ0(a))}. Thus, G ′ ∈ G(max{4, m}, n) if
G ∈ G(m,n).

The inclusion O(G ′) ⊆ O(G ) is trivial. We show the converse relation
O(G ) ⊆ O(G ′).

We say that an occurrence of a unary nonlexical constant of type p→ q is
linked to an occurrence of a lexical constant if the path which starts from the
negative occurrence of the subtype p in the type p → q of the occurrence of
the unary nonlexical constant ends in p in the type of the occurrence of the
lexical constant. A term M ∈ Λ(Σ0) is said to satisfy the linking condition if
for every occurrence of a unary nonlexical constant, there is an occurrence of
a lexical constant to which the occurrence of the unary nonlexical constant
is linked.
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In fact, every M ∈ A(G ) − Λ(Σ−
0 ) has an equivalent term M ′ ≈ M

that satisfies the linking condition. Since G satisfies Condition II in Def-
inition 4.12, we can assume that if a unary constant c occurs in M , the
head of the argument of c is either a lexical constant or a bound variable by
Lemma 4.14. If it is a lexical constant a, then c is linked to the lexical con-
stant a. If it is a bound variable, then as we have described in Section 4.3.1,
we can trace the path until it ends in a subtype of the type of a lexical
constant. Thus, here we assume that M satisfies the linking condition.

By induction on the size of M , we show that for every long normal term
M ∈ Λ(Σ0) that satisfies the linking condition, there is P ∈ Λ(Σ′

0) with
τ ′0(P ) = τ0(M) and L ′(P ) = L (M).

Case 1. M = λx.M ′ for some x. By the induction hypothesis we have
P ′ ∈ Λ(Σ′

0) such that τ ′0(P
′) = τ0(M

′) and L ′(P ′) = L (M ′). Thus, for
P = λx.P ′ ∈ Λ(Σ′

0), we have τ ′0(P ) = τ0(M) and L ′(P ) = L (M).
Case 2. M = xM1 . . .Mn where x is a variable or a non-unary nonlexical

constant. By the induction hypothesis we have Pi ∈ Λ(Σ′
0) such that τ ′0(Pi) =

τ0(Mi) and L ′(Pi) = L (Mi) for 1 ≤ i ≤ n. Thus, for P = xP1 . . . Pn ∈
Λ(Σ′

0), we have τ ′0(P ) = τ0(M) and L ′(P ) = L (M).
Case 3. Suppose that the head of M is a unary nonlexical constant

c0 ∈ C
−
0 of type p → q. Since M satisfies the linking condition, M is of the

form
M = c0(aM1 . . .Mn)

for some lexical constant a of type γ1 → · · · → γn → p. Let M ′
i be obtained

from Mi by replacing with fresh variables ~zi all the occurrences of unary
nonlexical constants linked to the head occurrence of a, so that M ′

i satisfies
the linking condition. By the induction hypothesis, there is P ′

i ∈ Λ(Σ′
0) such

that τ ′0(P
′
i ) = τ0(M

′
i) and L ′(P ′

i ) = L (M ′
i). Let ~ci be such that

Mi = M ′
i [~ci/~zi].

By the property of paths, |~ci| ≤ |γi|. By the definition of G ′, we have
[[N ]] ∈ C ′

0 where

N = λw1 . . . wn.c0(a(w1~c1) . . . (wn~cn)).

Thus, for P = [[N ]](λ~z1.P
′
1) . . . (λ~zn.P

′
n), we have

L
′(P ) = L

(
c0(a(M

′
1[~c1/~z1]) . . . (M

′
n[~cn/~zn]))

)

= L (c0(aM1 . . .Mn)) = L (M).

Case 4. Suppose that the head of M is a lexical constant a of type
γ1 → · · · → γn → p. M has form M = aM1 . . .Mn. Since G satisfies



72 Chapter 4. Lexicalized Abstract Categorial Grammars

Condition II-i, there is a nonlexical constant ep ∈ C0 of type p → p with
L (ep) = λx.x, so M ≈ epM . This case is reduced to Case 3, where we use
the induction hypothesis with respect to each Mi but not to aM1 . . .Mn.

Elimination of Nonlexical Constants

Lemma 4.24 implies that every semilexicalized ACG has an equivalent lexical-
ized ACG as we have discussed in Section 4.3.1. The lexicalization method in
Section 4.3.1 constructs a new ACG whose object vocabulary is the original
abstract vocabulary and whose lexical entries have the form

〈 [[a,~c]], (τ0(a) → τ0(~c) → s) → s, λw.wa~c 〉,

where the bound variable w “grasps” and “controls” original abstract con-
stants and then puts them at any places in a term we want. That trick is
powerful, but causes the increase of the order of the grammar by two. To
avoid this, we refrain from controlling lexical abstract constants, but continue
to grasp nonlexical ones, by a bound variable in new lexical entries. Since
the orders of nonlexical constants are at most two, this new strategy does not
increase the order of the grammar if the order of the given semilexicalized
ACG is four or higher.

Definition 4.25. Let a semilexicalized ACG G = 〈Σ0,Σ1,L , s〉 ∈ G(m,n)
contain no nullary or unary nonlexical constants. Let Γ ⊆ Λ(Σ0) be the set
of closed terms of the form

λw1 . . . wn.a(w1~c1) . . . (wn~cn) or

λw0w1 . . . wn.w0c0(a(w1~c1) . . . (wn~cn)))

where a ∈ C
+
0 , c0 and constants in ~ci are all nonlexical, τ0(a) = γ1 → · · · →

γn → p, τ0(w0) = τ0(c0) → p → q for some q ∈ A0, τ0(wi) = τ0(~ci) → γi for
i ≥ 1, and 0 ≤ |~ci| ≤ |τ0(γi)|. Note that Γ is a finite set.

The lexicalized form of G is an ACG G l ∈ G(max{4, m}, n) that has the
form

G
l = 〈Σ′

0,Σ1,L ◦ L
′, s〉

where

A
′
0 = A0,

C
′
0 = { [[M ]] |M ∈ Γ },

τ ′0([[M ]]) = τ0(M),

L
′(p) = p for p ∈ A0,

L
′([[M ]]) = M for [[M ]] ∈ C

′
0.



4.3 Lexicalization of Semilexicalized ACGs 73

Example 4.26. Let G = 〈Σ0,Σ1,L , s〉 have a lexical constant a ∈ C
+
0 of

type (s → s) → s and a nonlexical constant c ∈ C
−
0 of type s2 → s. Let us

consider the terms M and cMM in A(G ), where

M = a(λxs
1.a(λx

s
2.a(λx

s
3.a(λx

s
4.c(cx1x2)(cx3x4))))),

Let G ′ = 〈Σ′
0,Σ0,L

′, s〉 consist of the following lexical entries:

x ∈ C ′
0 τ ′0(x) L ′(x)

a (s→ s) → s a

A γ → s λwγ.a(wc)
B γ → γ → s λwγ

0w
γ.w0ca(wc)

where γ = (s2 → s) → s→ s. For

N = A(λys2→s
1 xs

1.A(λys2→s
2 xs

2.A(λys2→s
3 xs

3.a(λx
s
4.y1(y2x1x2)(y3x3x4))))),

N ′ = B(λys2→s
0 zs.y0zN)

(λys2→s
1 xs

1.A(λys2→s
2 xs

2.A(λys2→s
3 xs

3.a(λx
s
4.y1(y2x1x2)(y3x3x4))))),

we have L ′(N) = M and L ′(N ′) = cMM .

Definition 4.27. Let G be a semilexicalized ACG that has no nullary or
unary nonlexical constants. A β-expansion (λx1 . . . xm.M0)M1 . . .Mm of a
β-normal term M ∈ Λ(Σ0) is standard if

• M0 ∈ Λ(Σ+
0 ),

• Mi ∈ Λ(Σ−
0 ) for i ∈ {1, . . . , m},

• every bound variable of Mi has an atomic type for i ∈ {1, . . . , m},

• for every free variable y of Mi for i ≥ 1, there is a nonlexical constant
c with τ0(y) = τ0(c).

• there is no subterm of the form xi
~N1(xj

~N2) ~N3 ofM0 for i, j ∈ {1, . . . , m}.

Let #(M0, xi) denote the number of negative occurrences of atomic types in
the type τ0(xi) of the occurrence of xi which are linked to a subtype of the
type of some occurrence of a lexical constant in M0. A standard β-expansion
is good iff #

C
−
0

(Mi) ≤ #(M0, xi) holds for every Mi.

Note that every Mi (xi) has a second-order type for i ≥ 1.

Lemma 4.28. For every M ∈ A(G ), M has a good standard β-expansion.
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Proof. First we show that M has a standard β-expansion. Suppose that
M ∈ A(G ) has m occurrences of nonlexical constants c1, . . . , cm. Let M0 ∈
Λ(Σ+

0 ) be such that M = (λx1 . . . xm.M0)c1 . . . cm and Mi = ci for i ∈
{1, . . . , m}. If (λx1 . . . xm.M0)M1 . . .Mm is a good β-expansion of M , the

proof is done. Otherwise, M0 has the form M0 = N0[xi
~N1(xj

~N2)/w] for
some i, j ∈ {1, . . . , m}. Assume that i = m− 1 and j = m. Let M ′

0 =

N0[xi
~N1
~N2/w] and M ′

i = λ~z1~z2.Mi~z1(Mj~z2), where |~z1| = | ~N1| and |~z2| =

| ~N2|. If (λx1 . . . xm−1.M
′
0)M1 . . .Mm−2M

′
m−1 is a good β-expansion of M , the

proof is done. Otherwise, by repeating this procedure, eventually we get a
good β-expansion of M .

Let (λ~x.M0) ~M be a standard β-expansion of M and τ0(xi) = pi,1 → · · · →
pi,ni

→ pi. The occurrence of pi,j must be linked to some subtype of the type
of an occurrence of a lexical constant, as we have described in Section 4.3.1.
Thus #(M0, xi) = ni. On the other hand, the long normal form of Mi has the
form λzi,1 . . . zi,n1 .M

′
i , where M ′

i has an atomic type. M ′
i can be regarded as a

tree on C
−
0 ∪{zi,1, . . . , zi,ni

} whose leaves are exactly zi,1, . . . , zi,ni
. Recall that

if a tree contains no node of rank 1, then the number of leaves is larger than
the number of internal nodes. SinceM ′

i contains no nullary or unary constant,
we have #

C
−
0

(Mi) < ni. Thus the standard β-expansion is good.

Lemma 4.29. If M has a good β-expansion and contains a nonlexical con-
stant, then M contains some lexical constant.

Proof. Let (λx1 . . . xm.M0)M1 . . .Mm be a standard β-expansion of M . Since
M contains a nonlexical constant, there is Mk with #

C
−
0

(Mk) ≥ 1. By

#
C

−
0

(Mk) ≤ #(M0, xk), M0 contains a lexical constant.

Lemma 4.30. For a semilexicalized ACG G = 〈Σ0,Σ1,L , s〉 ∈ G(m,n)
which contains no nullary or unary nonlexical constants, let G ′ = 〈Σ′

0,Σ0,
L ′, s〉 ∈ G(m, 1) where Σ′

0 and L ′ are defined in Definition 4.25. We have
A(G ) = O(G ′).

Proof. The inclusion O(G ′) ⊆ A(G ) is trivial.
To show the converse, by induction on the size of M , we show that if a

β-normal term M ∈ Λ(Σ0) has a good β-expansion, then there is P ∈ Λ(Σ′
0)

such that τ ′0(P ) = τ0(M) and L ′(P ) = M .

Let (λ~x.M0) ~M be a good β-expansion of M . There are four cases, de-
pending on the form of M0. Without loss of generality, we can assume that
every element of ~M contains a constant. If (λ~x1x0~x2.M0) ~M1L ~M2 is a good

β-expansion of M where L is constant-free, then (λ~x1~x2.M0[L/x0]) ~M1
~M2 is

also a good β-expansion.
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Case 1. M0 = λz.M ′
0. Clearly (λ~x.M ′

0)
~M is a good β-expansion of its

β-normal form M ′ = |(λ~x.M ′
0)
~M |β. Since M ′ is strictly smaller than M =

λz.M ′, by the induction hypothesis, we get P ′ ∈ Λ(Σ′
0) with τ ′0(P

′) = τ0(M
′)

and L ′(P ′) = M ′. For P = λz.P ′ ∈ Λ(Σ′
0), we have τ ′0(P ) = τ0(M) and

L ′(P ) = M .
Case 2. M0 = wN1,0 . . . Nn,0 for some variable w not in ~x. Let ~xi be the

subsequence of ~x such that ~xi consists of the variables appearing in Ni,0, and
~Mi the corresponding subsequence of ~M . Let Ni = Ni,0[ ~Mi/~xi]. That is,

M = M0[ ~M/~x] = wN1,0 . . . Nn,0[ ~M/~x]

= w(N1,0[ ~M1/~x1]) . . . (Nn,0[ ~Mn/~xn]) = wN1 . . . Nn.

Clearly (λ~xi.Ni,0) ~Mi is a good β-expansion of Ni (see Remark 4.11). By
the induction hypothesis, we have Pi ∈ Λ(Σ′

0) with τ ′0(Pi) = τ0(Ni) and
L ′(Pi) = Ni. For P = wP1 . . . Pn ∈ Λ(Σ′

0), we have τ ′0(P ) = τ0(M) and
L ′(P ) = M .

Case 3. M0 = aN1,0 . . . Nn,0 for some lexical constant a ∈ C
+
0 of type

γ1 → · · · → γn → p. Let xi,1 . . . xi,mi
be the subsequence of ~x such that xi,j

appears in Ni,0, and Mi,1 . . .Mi,mi
the corresponding subsequence of ~M . Let

Ni = Ni,0[Mi,j/xi,j]1≤j≤mi
. (4.6)

That is,

(λ~x.M0) ~M = (λ〈xi,j〉
1≤i≤n
1≤j≤mi

.M0)〈Mi,j〉
1≤i≤n
1≤j≤mi

= M0[Mi,j/xi,j]
1≤i≤n
1≤j≤mi

= aN1,0 . . . Nn,0[Mi,j/xi,j]
1≤i≤n
1≤j≤mi

= a(N1,0[M1,j/x1,j]1≤j≤m1) . . . (Nn,0[Mn,j/xn,j]1≤j≤mn)

= aN1 . . . Nn = M .

For each i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ mi, Let

di,j = #(M0, xi,j) − #(Ni,0, xi,j), (4.7)

that is, di,j denotes the number of paths from negative occurrences of atomic
types in the type of the variable xi,j ending in the type of the head occurrence
of a in M0. Hence

∑
1≤j≤mi

di,j ≤ |γi| holds. Let

kij = min{di,j, #
C

−
0

(Mi,j)}. (4.8)
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We have

∑

1≤j≤mi

kij ≤
∑

1≤j≤mi

di,j ≤ |γi|. (4.9)

Let M ′
i,j be obtained from Mi,j by replacing first kij occurrences of nonlexical

constants ci,j,1, . . . , ci,j,kij
with fresh variables yi,j,1, . . . , yi,j,kij

, i.e.,

Mi,j = M ′
i,j[ci,j,1/yi,j,1, . . . , ci,j,kij

/yi,j,kij
].

Let

N ′
i ≡ Ni,0[M

′
i,j/xi,j]1≤j≤mi

,

i.e., by (4.6),
Ni ≡ N ′

i [~ci/~yi], (4.10)

where ~yi = 〈yi,j,h〉
1≤j≤mi

1≤h≤kij
and ~ci = 〈ci,j,h〉

1≤j≤mi

1≤h≤kij
. Since (λ~x.M0) ~M is a good

β-expansion of M , #
C

−
0

(Mi,j) − #(M0, xi,j) ≤ 0 holds. Hence

#
C

−
0

(M ′
i,j) = #

C
−
0

(Mi,j) − kij

= max{ 0, #
C

−
0

(Mi,j) − di,j } (by (4.8))

= max{ 0, #
C

−
0

(Mi,j) − (#(M0, xi,j) − #(Ni,0, xi,j)) }

(by (4.7))

≤ max{ 0, #(Ni,0, xi,j) }

= #(Ni,0, xi,j).

Therefore, (λxi,1 . . . xi,mi
.Ni,0)M

′
i,1 . . .M

′
i,mi

is a good β-expansion of N ′
i . By

the induction hypothesis, we have P ′
i ∈ Λ(Σ′

0) such that

L
′(P ′

i ) = N ′
i . (4.11)

Since |~ci| =
∑

1≤j≤mi
kij ≤ |γi| by (4.9), we have a constant A ∈ C ′

0 such that

L
′(A) ≡ λw1 . . . wn.a(w1~c1) . . . (wn~cn).

For P ≡ A(λ~y1.P
′
1) . . . (λ~yn.P

′
n) ∈ Λ(Σ′

0), we have

L
′(P ) = L

′(A)(λ~y1.N
′
1) . . . (λ~yn.N

′
n) (by (4.11))

= a(N ′
1[~c1/~y1]) . . . (N

′
n[~cn/~yn])

= aN1 . . . Nn (by (4.10))

= M .
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Case 4. For a good β-expansion (λ~x.M0) ~M of M , M0 is of the form xi
~K

for some xi in ~x. Without loss of generality, we can assume that it is x1. Let

M0 = x1K1 . . .Km

M = M0[ ~M/~x]

= x1K1 . . .Km[M1/x1, ~M1/~x1, . . . , ~Mm/~xm]

= M1K1[ ~M1/~x1] . . .Km[ ~Mm/~xm]

where ~xi is the subsequence of ~x consisting of the variables in Ki, and ~Mi is
the corresponding subsequence of ~M . Since x1 has a second-order type, each
Ki has an atomic type.

Recall that we assume that M1 contains at least one nonlexical constant.
Since

#(M0, x1) ≥ #
C

−
0

(M1) ≥ 1,

there is Kk for k ∈ {1, . . . , m} of the form

Kk = aN1,0 . . . Nn,0

for some a ∈ C
+
0 of type γ1 → · · · → γn → p and Ni,0 ∈ Λ(Σ+

0 ) of type γi for
i ∈ {1, . . . , n}. Let M ′

1 be obtained from M1 by replacing an occurrence of a
constant c0 ∈ C

−
0 with y0, and M ′

0 obtained from M0 by replacing Kk with
a fresh variable zk, i.e.,

M1 = M ′
1[c0/y0]

M ′
0 = x1K1 . . . Kk−1zkKk+1 . . .Km

and define M ′ as

M ′ = M ′
0[M

′
1/x1, ~M1/~x1, . . . , ~Mk−1/~xk−1, ~Mk+1/~xk+1, . . . , ~Mm/~xm]

Then,

M = M0[M1/x1, ~M1/~x1, . . . , ~Mm/~xm]

= M ′
0[Kk/zk][M

′
1[c0/y0]/x1, ~M1/~x1, . . . , ~Mm/~xm]

= M ′[c0/y0, Kk[ ~Mk/~xk]/zk]. (4.12)

For i 6= k, we have #(M ′
0, xi,j) = #(M0, xi,j) ≥ #

C
−
0

(Mi,j) for every xi,j in

~xi and the corresponding term Mi,j in ~Mi, and

#
C

−
0

(M ′
1) = #

C
−
0

(M1) − 1 ≤ #(M0, x1) − 1 = #(M ′
0, x1).
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Therefore

(λx1~x1 . . . ~xk−1~xk+1 . . . ~xm.M
′
0)M

′
1
~M1 . . . ~Mk−1

~Mk+1 . . . ~Mm

is a good β-expansion ofM ′. By the induction hypothesis we have P ′ ∈ Λ(Σ′
0)

such that

L
′(P ′) = M ′.

On the other hand, by #(M0, xi,j) = #(Ki, xi,j) for each xi,j in ~xi for all

i ∈ {1, . . . , m}, (λ~xi.Ki) ~Mi is a good β-expansion of Ki[ ~Mi/~xi]. Therefore,
we can apply the same discussion5 in Case 3 to

Kk[ ~Mk/~xk] = aN1,0 . . . Nn,0[ ~Mk/~xk],

and then we find P ′
i ∈ Λ(Σ′

0) and a sequence ~ci of nonlexical constants such
that |~ci| ≤ |γi| and

L
′(P ′

i )[~ci/~yi] = Ni,0[ ~Mk/~xk].

By the definition of Σ′
0, we have a constant B which is mapped to

L
′(B) = λw0 . . . wn.w0c0(a(w1~c1) . . . (wn~cn)).

Thus, for P = B(λy0zk.P
′)(λ~y1.P

′
1) . . . (λ~yn.P

′
n) ∈ Λ(Σ′

0), we have

L
′(P ) =

(
λy0zk.L

′(P ′)
)
c0

(
a(L ′(P ′

1)[~c1/~y1]) . . . (L
′(P ′

n)[~cn/~yn])
)

= M ′[c0/y0, aNi,0 . . . Nn,0[ ~Mk/~xk]/zk]

= M ′[c0/y0, Kk[ ~Mk/~xk]/zk]

= M . (by (4.12))

Theorem 4.31. For every semilexicalized ACG G ∈ G(m,n), there is a
lexicalized ACG G ′ ∈ G(max{4, m}, n) such that

O(G ′) = {R ∈ O(G ) | R contains a constant }.

Proof. By Lemmas 4.28 and 4.30.

5Substitute Kk[ ~Mk/~xk] for M in Case 3. Kk in Case 4 and M0 in Case 3 have the
same form.
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4.3.5 Third-Order Case

In the previous subsection, for the fourth or higher-order case, we have
constructed a lexicalized ACG G l = 〈Σ′

0,Σ1,L ◦ L ′, s〉, where the ACG
G ′ = 〈Σ′

0,Σ0,L
′, s〉 “controls” nonlexical (w.r.t. L ) constants c ∈ C

−
0 by

bound variables in its lexical entries, and then we can put nonlexical con-
stants in almost arbitrary places. Since variables that can be functors of
second-order nonlexical constants are at least third-order, then the order of
abstract vocabulary becomes more than three.

Recall Example 4.26. For the third-order semilexicalized ACG G ∈
G(3, n), let

M = a1(λx
s
1.a2(λx

s
2.a3(λx

s
3.a4(λx

s
4.c1(c2x1x2)(c3x3x4))))) ∈ A(G ) (4.13)

where ai ∈ C
+
0 has type (s → s) → s and ci ∈ C

−
0 has type s2 → s.

Here we number each occurrence of a constant to facilitate discussion. In
Example 4.26, we first replace occurrences of ci with new bound variables yi,
and then replace occurrences of aiNi with Ai(λyi.Ni), where Ai ∈ C ′

0 is a new
abstract constant mapped to λw.ai(wci). The resultant term is

A1(λy
s2→s
1 xs

1.A2(λy
s2→s
2 xs

2.A3(λy
s2→s
3 xs

3.a4(λx
s
4.y1(y2x1x2)(y3x3x4))))).

(4.14)
This way we associate occurrences of nonlexical constants with occurrences
of lexical constants. To keep the order of the abstract vocabulary in three,
however, that strategy must be abandoned. We are no longer able to use
second-order variables in the abstract vocabulary.

Recall the idea that we have used for lexicalization of second-order ACGs,
where the third-order lexicalized ACG G ′ in Proposition 4.18 is transformed
into the second-order lexicalized ACG G l in Definition 4.20. We have intro-
duced new abstract atomic types in A ′

0 mapped to second-order types on
T (A0) by the new lexicon L ′. That trick works well because the usage of
free variables and λ-abstraction in an element of A(G ′) is very much limited
so that we can embed terms involving λ-abstraction into finitely many lexical
entries of G ′′ shown in (4.5) on page 64.

We want to apply that technique to the third-order case. As we see in
(4.14), the lexicalization method for the fourth or higher-order case con-
structs the form of the nonlexical part c1(c2x1x2)(c3x3x4) by variables yi of
second-order type, and then substitutes nonlexical constants for those vari-
ables. To exclude variables of second-order types from terms in the abstract
language in the third-order case, we must embed those variables into the
lexical entries so that new lexical entries can build any nonlexical parts in a
term in the abstract language.
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Let us associate occurrences of nonlexical constants with ones of lexical
constants in M as follows:

a1 (λx1. a2 (λx2. a3 (λx3. a4 (λx4. )))).

c1

c2

x1 x2

c3

x3 x4

According to this association, we let an ACG G ′ = 〈Σ′
0,Σ0,L

′, [s]〉 ∈ G(3, 2)
consist of the following lexical entries.6

x ∈ C ′
0 τ ′0(x) L ′(x)

a4 [s→ s] → [s] a4

A3 [s→ s] → ([s→ s] → [s]) → [s] λyw.a3(λx3.w(λx4.y(c3x3x4)))
A2 [s→ s] → ([s→ s] → [s]) → [s] λyw.a2(λx2.w(λv.c1(yx2)v))
A1 ([s→ s] → [s]) → [s] λw.a1(λx1.w(λv.c2x1v))

where [s → s] and [s] are new abstract atomic types mapped to s → s and
s, respectively. It is a routine to check that L ′(N) = M for

N = A1(λy
[s→s]
1 .A2y1(λy

[s→s]
2 .A3y2a4)).

Elimination of Unary Nonlexical Constants

We start lexicalization of third-order semilexicalized ACGs with a modifica-
tion of Lemma 4.24. While Lemmas 4.16 and 4.23 (elimination of nullary
nonlexical constants) are good enough for third-order ACGs, Lemma 4.24 is
not.

Lemma 4.32 (Elimination of Unary Nonlexical Constants). For every
semilexicalized ACG G ∈ G(3, n), we can find a semilexicalized ACG G ′ ∈
G(3, n) such that G ′ contains no nullary or unary nonlexical constants and

O(G ′) = {R ∈ O(G ) | R contains a constant }.

Proof. We assume that G contains no nullary nonlexical constants and sat-
isfies Condition II in Definition 4.12. O(G ) contains no combinators.

We let an ACG G ′ consist of the following lexical entries:

6Our actual method generates a lexicalized ACG whose lexical entries are a little more
complicated.
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• 〈c, τ0(c), L (c)〉 for all c ∈ C
−
0 unless τ0(c) is unary,

• 〈[[M ]], τ0(M), L (M)〉 for each M of the form

M = λx1 . . . xn.c0(a(λ~z1.x1Mi,1 . . .M1,m1) . . . (λ~zn.xnMn,1 . . .Mn,mn))

where ~zi = z
pi,1

i,1 . . . z
pi,mi

i,mi
, a ∈ C

+
0 ,

τ0(a) = (p1,1 → · · · → p1,m1 → p1) → · · · → (pn,1 → · · · → pn,mn → pn) → p,

Mi,j =

{
ci,jzi,j if j ∈ Ii

zi,j if j 6∈ Ii
for some Ii ⊆ {1, . . . , mi},

c0, ci,j ∈ C
−
0 , τ0(c0) = p→ q, τ0(ci,j) = pi,j → qi,j,

τ0(xi) = qi,1 → · · · → qi,mi
→ pi where pi,j = qi,j if j 6∈ Ii.

Since the order of the type of the bound variables xi in the above M is at most
2, we have ord(τ ′0([[M ]])) ≤ max{ 3, ord(τ0(a)) | a ∈ C0 }. Thus, G ′ ∈ G(3, n)
if G ∈ G(3, n).

The inclusion O(G ′) ⊆ O(G ) is trivial. We show the converse relation
O(G ) ⊆ O(G ′).

We say that an occurrence of a unary nonlexical constant of type p→ q is
linked to an occurrence of a lexical constant if the path which starts from the
negative occurrence of the subtype p in the type p → q of the occurrence of
the unary nonlexical constant ends in p in the type of the occurrence of the
lexical constant. We say that a termM ∈ Λ(Σ0) satisfies the linking condition
if for every occurrence of a unary nonlexical constant, there is an occurrence
of a lexical constant to which the occurrence of the unary nonlexical constant
is linked. In fact, we can assume that every M ∈ A(G ) satisfies the linking
condition, as explained in the proof of Lemma 4.24. In the third-order case,
when a unary nonlexical constant c is linked to a lexical constant a in some
term in long normal form, their occurrences can be written either

• c(a ~M) (direct link) or

• a ~M(λ~yz.N [cz/x]),

since the order of a is at most three. There cannot be two or more bound
variables on which a path passes such as

a(λy.y(λz.cz)).

If the above term is well-typed, the order of a must be more than three.



82 Chapter 4. Lexicalized Abstract Categorial Grammars

Now, we show by induction on the size of M that for every term M ∈
Λ(Σ0) satisfying the linking condition, there is P ∈ Λ(Σ′

0) such that τ ′0(P ) =
τ0(M) and L ′(P ) = L (M). We assume that M is in long normal form.

If M contains no constants, let P = M ∈ Λ(Σ′
0). Otherwise, it is enough

to treat cases where M is of the form

M = bM1 . . .Mn

where b is either a lexical constant or a unary nonlexical constant. Other
cases are trivial as in the proof of Lemma 4.23.

Case 1. Suppose that the head of M is a unary nonlexical constant
c0 ∈ C

−
0 . By the linking condition, M is of the form

M = c0(aM1 . . .Mn)

for some a ∈ C
+
0 of type

τ0(a) = (p1,1 → · · · → p1,m1 → p1) → · · · → (pn,1 → · · · → pn,mn → pn) → p.

We can assume that Mi has the form Mi = λ~zi.M
′
i with ~zi = z

pi,1

i,1 . . . z
pi,mi

i,mi
.

Let

Ii = { j | some occurrence of a unary nonlexical constant ci,j

is linked to a via pi,j }.

Then, we can find M ′′
i and Mi,j such that

M ′
i = M ′′

i [Mi,j/yi,j]1≤j≤mi

Mi,j =

{
ci,jzi,j if j ∈ Ii,

zi,j if j ∈ {1, . . . , mi} − Ii.

Clearly each M ′′
i satisfies the linking condition. By the induction hypothesis,

there is P ′
i such that τ ′0(P

′
i ) = τ0(M

′′
i ) and L ′(P ′

i ) = L (M ′′
i ). By the

definition of G ′, there is a constant [[N ]] ∈ C ′
0 for

N = λx1 . . . xn.c0(a(λ~z1.x1M1,1 . . .M1,m1) . . . (λ~zn.xnMn,1 . . .Mn,mn)).

Thus, for

P = [[N ]](λy1,1 . . . y1,m1.P
′
1) . . . (λyn,1 . . . yn,mn.P

′
n),
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we have

L
′(P ) = L (N)(λy1,1 . . . y1,m1 .L (M ′′

1 )) . . . (λyn,1 . . . yn,mn.L (M ′′
n))

= L
(
c0(a(λ~z1.M

′′
1M1,1 . . .M1,m1) . . . (λ~zn.M

′′
nMn,1 . . .Mn,mn))

)

= L
(
c0(a(λ~z1.M

′
1) . . . (λ~zn.M

′
n))

)

= L (M).

Case 2. Suppose that the head of M is a lexical constant a ∈ C
+
0 and

M is of the form M = aM1 . . .Mn. Since M is long normal form, M has
an atomic type p. Since G ′ satisfies Condition II, there is ep ∈ C0 such that
τ0(ep) = p → p and L (ep) = λx.x. By epM ≈ M , this case reduces to
Case 1, where the induction hypothesis is applied to terms strictly smaller
than M .

Technical Definition and Lemma

As a preparation for elimination of nonlexical constants, we need some tech-
nical definition and lemma. These are necessary for building nonlexical parts
in a term in the original abstract language. The reader can assume that the
following second-order signature Σ is the nonlexical part Σ−

0 of the abstract
vocabulary of the given semilexicalized ACG.

Hereafter we denote the set of nullary free variables of M by Fv
0(M). We

say that a second-order type is multi-ary if it is k-ary for k ≥ 2. Suppose
that a second-order signature Σ = 〈A ,C , τ〉 is such that every constant has
a multi-ary type. Let kΣ = max{ k | τ0(c) = p1 → · · · → pk → q, c ∈ C }.
We define a subset Γ(Σ) of Λ(Σ) to consist of λ-terms M such that

• M has an atomic type,

• M is built from variables of second-order types whose arities are strictly
less than kΣ and constants of Σ,

• there is no subterm of the form y1(y2M
′)) for any two unary variables

y1 and y2.
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Formally Γ(Σ) is defined by

Γ−
0 (Σ) = { zp | p ∈ A },

Γn(Σ) = Γ−
n (Σ) ∪ { yp→qM |M ∈ Γ−

n (Σ) and τ(M) = p },

Γ−
n+1(Σ) = Γ−

n (Σ) ∪ { cN1 . . . Nk | N1, . . . , Nk ∈ Γn(Σ),

τ0(c) = τ(N1) → · · · → τ(Nk) → q }

∪ { xτ(N1)→···→τ(Nk)→qN1 . . . Nk | N1, . . . , Nk ∈ Γn(Σ), 2 ≤ k < kΣ },

Γ(Σ) =
⋃

n≥0

Γn(Σ).

We denote by Γ′′(Σ) the set of λ-terms obtained from elements of Γ(Σ) by
binding all the nullary variables in them. Γ′′

1(Σ) is the finite subset of Γ′′(Σ)
whose elements contain at most one occurrence of a constant or multi-ary
variable. Each element of Γ′(Σ) is obtained from an element of Γ(Σ) by
binding some nullary variables that have the same parent when we ignore
unary variables, but the term rooted by that parent contains at least one
nullary free variable. Note that if M ∈ Γ′(Σ), then the arity of M is less
than kΣ.

λz1 . . . zk.
x

(y1)

z1

. . . (yk)

zk

∈ Γ′(Σ)

λz1 . . . zk.
(y0)

x

(y1)

z1

(y2)

z2

. . . (yk)

zk

∈ Γ′′
1(Σ)

Formally each of the above sets are defined as follows:

Γ′′(Σ) = {λ~z.N | N ∈ Γ(Σ), ~z is a sequence of all the nullary variables in N },

Γ′′
1(Σ) = {λ~z.M ∈ Γ′′(Σ) |M ∈ Γ1(Σ) },

Γ′(Σ) = {λz1 . . . zk.M |M ∈ Γ(Σ), M = M ′[x ~M0N1
~M1 . . . Nk

~Mk/z],

k ≥ 1, x ∈ C ∪ X , ~M0, . . . , ~Mk ∈ Γ(Σ), N1, . . . , Nk ∈ Γ0(Σ),

Fv
0(Ni) = {zi}, ~M0 . . . ~Mk 6= ε }.

Lemma 4.33. For a fixed λ-term M ∈ Γ(Σ), let us partition the set Fv
0(M)

of nullary free variables of M into two disjoint subsets Y and Z such that
Y 6= ∅. We can find M ′ ∈ Γ(Σ) and M1, . . . ,Mm ∈ Γ′(Σ) such that
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• M = M ′[Mi/xi]1≤i≤m,

• Fv
0(M ′) = Y and

⋃
1≤i≤m Fv

0(Mi) = Z.

x

Y Zx

Z Zx

Y Y Z

x1

Y x2

Y Y

λz1z2.
x

z1 z2 Z

λz1z2.
x

Z
x

Z

z1 z2 Z

Proof. Induction on M . If M ∈ Γ0(Σ), then M = yz or M = z. Since Y is
not empty, Y = {z} and Z = ∅. Letting M ′ = M , we see that the lemma
holds.

Otherwise, M is of the form

M =

{
xN1 . . . Nn or

y(xN1 . . . Nn)

where 2 ≤ n ≤ kΣ, x is a constant or a variable, Ni ∈ Γ(Σ), and y is a unary
variable. Let N0 be such that

M = N0N1 . . . Nn

(N0 = x or N0 = λz1 . . . zn.y(xz1 . . . zn) depending on the form of M). Let us
partition {1, . . . , n} into two subsets I and J so that

I = { i | 1 ≤ i ≤ n, Y ∩ Fv
0(Ni) 6= ∅ }

J = { i | 1 ≤ i ≤ n, Fv0(Ni) ⊆ Z }.

For each i ∈ I, by applying the induction hypothesis to Ni, we get N ′
i ∈ Γ(Σ)

and Ni,1, . . . , Ni,mi
∈ Γ′(Σ) such that

• Ni = N ′
i [Ni,j/xi,j]1≤j≤mi

,

• Y ∩ Fv
0(Ni) = Fv

0(N ′
i) and Z ∩ Fv

0(Ni) =
⋃

1≤j≤mi
Fv

0(Ni,j).

We see I 6= ∅ by Y 6= ∅.
Case 1. |I| = 1. Let k be the unique integer such that I = {k}. Depend-

ing on the form of N ′
k ∈ Γ(Σ), we have two subcases.
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Case 1.1. The head of N ′
k is xk,j for some j ∈ {1, . . . , mk}. Nk,j ∈ Γ′(Σ)

can be represented as
Nk,j = λ~zk,j.N

′
k,j

for some N ′
k,j ∈ Γ(Σ). Let

M ′ = N ′
k

Mi =

{
Nk,i if i 6= j,

λ~zk,j.N0N1 . . . Nk−1N
′
k,jNk+1 . . . Nn if i = j

for 1 ≤ i ≤ mk. Then, we have

• M ′ ∈ Γ(Σ) and Mi ∈ Γ′(Σ) for 1 ≤ i ≤ mk,

• M = M ′[Mi/xk,i]1≤i≤mk
,

• Fv
0(M ′) = Y and

⋃
1≤i≤mk

Fv
0(Mi) = Z.

Case 1.2. The head of N ′
k is not xk,j for any j ∈ {1, . . . , mk}. Let

N ′′
k =

{
N ′′

k if N ′
k is of the form N ′

k = y′N ′′
k for some unary variable y′

N ′
k if the head of N ′

k is not a unary variable

K =

{
y′z if N ′

k is of the form N ′
k = y′N ′′

k for some unary variable y′

z if the head of N ′
k is not a unary variable.

Then, N ′
k = K[N ′′

k /z] and the head of N ′′
k is not a unary variable. Let

M ′ = y0N
′′
k ,

M0 = λz.N0N1 . . . Nk−1KNk+1 . . . Nn,

where y0 is a fresh unary variable of type τ(N ′′
k ) → τ(M). We have

• M ′ ∈ Γ(Σ) and M0 ∈ Γ′(Σ),

• M = M ′[M0/y0][Nk,i/xk,i]1≤i≤mk
,

• Fv
0(M ′) = Y and Fv

0(M0) ∪
⋃

1≤i≤mk
Fv

0(Nk,i) = Z.

Case 2. 1 < |I| < n. Let

M ′ = x0
~N ′

I

M0 = λ~zI .N0N
′′
1 . . . N

′′
n

N ′′
i =

{
zi if i ∈ I

Ni if i 6∈ I
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where ~N ′
I = 〈N ′

i | i ∈ I 〉, ~zI = 〈 zi | i ∈ I 〉, and τ(x0) = τ(M0) = τ( ~N ′
I) →

τ(M).
Note that since 1 < |I| < n ≤ kΣ, x0 has neither a unary nor kΣ-ary type.

Therefore,

• M ′ ∈ Γ(Σ) and M0 ∈ Γ′(Σ),

• M = M ′[M0/x0][Ni,j/xi,j]
i∈I
1≤j≤mi

,

• Fv
0(M ′) = Y and Fv

0(M0) ∪
⋃

i∈I
1≤j≤mi

Fv
0(Ni,j) = Z.

Case 3. |I| = n. Let M ′ = N0N
′
1 . . . N

′
n ∈ Γ(Σ). We have

• M = M ′[Ni,j/xi,j]
1≤i≤n
1≤j≤mi

,

• Fv
0(M ′) = Y and

⋃
1≤i≤n

1≤j≤mi

Fv
0(Ni,j) = Z.

Elimination of Nonlexical Constants

Definition 4.34. Let G = 〈Σ0,Σ1,L , s〉 ∈ G(3, n) be a third-order semilex-
icalized ACG that has no nullary or unary nonlexical constants. Let

A
′
0 = { [γ] | γ is a second-order type with |γ| ≤ kΣ−

0
}

where kΣ−
0

= max{ |τ0(c)| − 1 | c ∈ C
−
0 }.

Let [~α] → β denote [α1] → · · · → [αm] → β if ~α represents the sequence
α1 . . . αm of types in T (A0) and [αi] ∈ A ′

0 . Let C ′
0 be the set of constants

AK,M for all K and M such that

• KM is well-typed,

• K ∈ Γ′′
1(Σ

−
0 ),

• M = a(λ~v1.w1
~M1

~M ′
1) . . . (λ~vm.wm

~Mm
~M ′

m),

– a ∈ C
+
0 of type (~p1 → p1) → · · · → (~pm → pm) → p,

– ~Mi consists of elements of Γ(Σ−
0 ),

– ~M ′
i consists of elements of Γ′(Σ−

0 ),

– ~vi is a sequence of the nullary free variables in ~Mi and ~M ′
i ,

– τ0(~vi) = ~pi,
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– τ0(wi) = τ0( ~Mi) → τ0( ~M
′
i) → pi.

Let {y1, . . . , yl} = Fv(KM) − {w1, . . . , wm}. We define τ ′0 and L ′ as

• τ ′0(AK,M) = [τ0(y1)] → · · · → [τ0(yl)] → γ1 → · · · → γm → [τ0(KM)],

where γi = [τ0( ~Mi)] → [τ0( ~M
′
i)] → [pi],

• L ′([γ]) = γ for all [γ] ∈ A ′
0 ,

• L ′(AK,M) = λy1 . . . ylw1 . . . wm.KM .

An ACG G l called the lexicalized form of G is defined as

G
l = 〈Σ′

0,Σ1,L ◦ L
′, [s]〉 ∈ G(3, n+ 1)

where Σ′
0 = 〈A ′

0 ,C
′
0, τ

′
0〉.

We need to check the well-definedness of the above definition. First
we check that τ ′0(AK,M) ∈ T (A ′

0 ). Since every element of Γ(Σ−
0 ) has an

atomic type, and every element of Γ′(Σ−
0 ) has less than kΣ−

0
-ary type, we see

γi ∈ T (A ′
0). By the definition of Γ(Σ−

0 ) and Γ′(Σ−
0 ), the arities of variables

y1, . . . , yl are less than kΣ−
0
. Therefore, [τ0(yj)] ∈ A ′

0 and τ ′0(AK,M) ∈ T (A ′
0).

Second we check that C ′
0 is finite. Since Γ′′

1(Σ
−
0 ) is a finite set, finitely

many possible forms of K exist. In M , the length of ~vi for 1 ≤ i ≤ n is
determined by the type of a. Since each element of ~Mi, ~M

′
i has at least one

element of ~vi and each variable in ~vi appears exactly once in some element of
~Mi, ~M

′
i , thus we see | ~Mi

~M ′
i | ≤ |~vi|. For each Mi,j in ~Mi, Fv

0(Mi,j) consists of
some variables in ~vi only. If Mi,j contains no unary variables, then the size of
Mi,j is bounded by |Fv0(Mi,j)| ≤ |~vi|, otherwise, the size ofMi,j is bounded by
2|Fv0(Mi,j)| by the restriction on occurrences of unary variables in elements of

Γ(Σ−
0 ). Similarly, the size of M ′

i,j in ~M ′
i is bounded by 2(|Fv0(M ′

i,j)|+kΣ−
0
) ≤

2(|~vi| + kΣ−
0
). Since the type of wi is determined uniquely by the types of a

and elements of ~Mi, ~M
′
i , finitely many possible forms of M exist.

By the construction, Σ′
0 is third-order, and ord(L ◦ L ′) ≤ ord(L ) +

ord(L ′) − 1 = ord(L ) + 1. Thus G l ∈ G(3, n+ 1) if G ∈ G(3, n).

Definition 4.35. Let M be an abstract λ-term of an atomic type of semilex-
icalized third-order ACG G = 〈Σ0,Σ1,L , s〉. We say that a β-expansion
(λx1 . . . xm.M0)M1 . . .Mm of a β-normal term M ∈ Λ(Σ0) is good if

• M0 ∈ Λ(Σ+
0 ),

• every variable in M0 other than xi has an atomic type,
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• Mi ∈ Γ′′(Σ−
0 ) for i ≥ 1,

• [linking condition] every path from a negative occurrence of an atomic
type in the type of xi ends in the type of an occurrence of a lexical
constant in M0.

If M ∈ A(G ), then every variable in M has an atomic type, since G is
third-order. It is clear that M has a good β-expansion.

Lemma 4.36. O(G ) = O(G l).

Proof. The inclusion O(G l) ⊆ O(G ) is easily seen. If P ∈ A(G l), then
L ′(P ) ∈ A(G ) and thus L ◦ L ′(P ) ∈ O(G ). We show the converse
O(G ) ⊆ O(G l). Recall that every M ∈ A(G ) has a good β-expansion.
By induction on M , we show that if a β-normal term M ∈ Λ(Σ0) of an
atomic type has a good β-expansion, then we have P ∈ Λ(Σ′

0) such that
τ ′0(P ) = [τ0(M)], L ′(P ) = M , and moreover, for each free variable y in M ,
P has the corresponding variable of type [τ0(y)] ∈ A ′

0 .

Let (λ~x.M0) ~M be a good β-expansion of M . M0 has an atomic type. We
have four cases depending on the head of M0.

Case 1. The head of M0 is a variable z not in ~x. By the definition, every
variable appearing in M0 other than elements of ~x has an atomic type. That
is, M0 = zp for some p ∈ A0 and thus both ~x and ~M are empty. Let P = z[p].

Case 2. If the head of M0 is a lexical constant a ∈ C
+
0 of type γ1 →

· · · → γn → p, then

M = M0[Mi,j/xi,j]
1≤i≤n
1≤j≤mi

= a(λ~v1.N1,0) . . . (λ~vn.Nn,0)[Mi,j/xi,j]
1≤i≤n
1≤j≤mi

= a(λ~v1.N1,0[M1,j/x1,j ]1≤j≤m1) . . . (λ~vn.Nn,0[Mn,j/xn,j]1≤j≤mn)

= aN1 . . . Nn (4.15)

where τ0(Ni,0) ∈ A0 and (λ~x.M0) ~M = (λ〈xi,j〉
1≤i≤n
1≤j≤mi

.M0)〈Mi,j〉
1≤i≤n
1≤j≤mi

. Sup-
pose that xi,j appears in Ni,0 as

xi,j
~Li,j

where τ0(xi,j
~Li,j) ∈ A0.

7 Some elements of ~Li,j are elements of ~vi and some
are not. Without loss of generality, we can assume that8

xi,j
~Li,j = xi,j~vi,j

~L′
i,j

7If Ni,0 is in long normal form, a subterm of that form is found. We can assume it
without loss of generality.

8A permutation of the arguments of xi,j can be performed with the same permutation
on the order of the abstraction in Mi,j .
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where every element of ~vi,j is in ~vi but no element of ~L′
i,j is. Let ~qi,j = τ0(~vi,j)

and ~q ′
i,j = τ0(~L

′
i,j). Thus, for

τ0(xi,j) = ~qi,j → ~q ′
i,j → qi,j = τ0(~vi,j) → τ0(~L

′
i,j) → qi,j,

every path starts from ~qi,j ends in the type of the head occurrence of a in
M0, and no path starts from ~q ′

i,j does. Corresponding to this partition, let

Mi,j = λ~zi,j~z
′
i,j.M

−
i,j

where τ0(~zi,j) = ~qi,j, τ0(~z
′
i,j) = ~q ′

i,j, τ0(M
−
i,j) = qi,j.

Let us partition {1, . . . , mi} into two subsets

Ii = { j | 1 ≤ j ≤ mi, ~q
′
i,j 6= ε },

Ji = { j | 1 ≤ j ≤ mi, ~q
′
i,j = ε }.

For each j ∈ Ii, by applying Lemma 4.33 to M−
i,j by regarding ~zi,j as Z and

~z ′
i,j as Y , we can find kij ∈ N, M ′′

i,j and Mi,j,h for 1 ≤ h ≤ kij such that

• M ′′
i,j ∈ Γ(Σ−

0 ),

• ~z ′
i,j consists of exactly the members of Fv

0(M ′′
i,j),

• Mi,j,h ∈ Γ′(Σ−
0 ) for 1 ≤ h ≤ kij,

• ~zi,j = ~zi,j,1 . . . ~zi,j,kij
where ~zi,j,h consists of exactly the members of

Fv
0(Mi,j,h),

• M−
i,j = M ′′

i,j[Mi,j,h/yi,j,h]1≤h≤kij
.

We let
M ′

i,j = λ~z ′
i,j.M

′′
i,j ∈ Γ′′(Σ−

0 ),

so

Mi,j = λ~zi,j~z
′
i,j.M

−
i,j

= λ~zi,j~z
′
i,j.M

′′
i,j[Mi,j,h/yi,j,h]1≤h≤kij

= λ~zi,j.M
′
i,j[Mi,j,h/yi,j,h]1≤h≤kij

(4.16)

for j ∈ Ii.
Let N ′

i,0 be obtained from Ni,0 by replacing xi,j~vi,j with x′i,j, i.e.,

Ni,0 = N ′
i,0[xi,j~vi,j/x

′
i,j]1≤j≤mi

, (4.17)
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where τ0(x
′
i,j) = ~q ′

i,j → qi,j. If j ∈ Ji, then τ0(x
′
i,j) = qi,j ∈ A0. Let

N ′
i = N ′

i,0[M
′
i,j/x

′
i,j]j∈Ii

. (4.18)

We show that (λ〈x′i,j〉j∈Ii
.N ′

i,0)〈M
′
i,j〉j∈Ii

is a good β-expansion of N ′
i . By

M0 ∈ Λ(Σ+
0 ), Ni,0 ∈ Λ(Σ+

0 ), thus N ′
i,0 ∈ Λ(Σ+

0 ), and τ0(N
′
i,0) = τ0(Ni,0) ∈ A0.

All variables appearing in Ni,0 other than x′i,j appears in M0, Ni,0, so they
have atomic types, and x′i,j with j ∈ Ji also have atomic types. M ′

i,j ∈ Γ′′(Σ−
0 )

by its construction. Recall that for τ0(xi,j) = ~qi,j → ~q ′
i,j → qi,j, all occurrences

of atomic types in ~qi,j are linked to the head occurrence of a in M0, and all
occurrences of atomic types in ~q ′

i,j are linked to some other lexical constants in
M0, i.e., those lexical constants are in Ni,0 and thus in N ′

i,0. This implies that,
for τ0(x

′
i,j) = ~q ′

i,j → qi,j, all occurrences of atomic types in ~q ′
i,j are linked to

those lexical constants in N ′
i,0. Therefore, (λ〈x′i,j〉j∈Ii

.N ′
i,0)〈M

′
i,j〉j∈Ii

satisfies
the linking condition and thus is a good β-expansion of N ′

i . By applying the
induction hypothesis to N ′

i , we get P ′
i ∈ Λ(Σ′

0) such that τ ′0(P
′
i ) = [τ0(N

′
i)],

L
′(P ′

i ) = N ′
i , (4.19)

and each free variable y of N ′
i has the type [τ0(y)] ∈ A ′

0 in P ′
i . Let

• ~v ′
i be the subsequence of ~vi consisting of variables not in ~vi,j for any j,

• ~x ′
i be the sequence of variables x′i,j for j ∈ Ji,

• ~yi be the sequence of variables yi,j,h for j ∈ Ii, 1 ≤ h ≤ kij.

Indeed the variables constituting above sequences occur free in N ′
i . Let

Pi = λ~v ′
i~x

′
i~yi.P

′
i , (4.20)

where
τ ′0(Pi) = [τ0(~v

′
i )] → [τ0(~x

′
i)] → [τ0(~yi)] → [τ0(N

′
i)].

On the other hand, the following equation holds:

Ni = λ~vi.Ni,0[Mi,j/xi,j]1≤j≤mi
(by (4.15))

= λ~vi.N
′
i,0[xi,j~vi,j/x

′
i,j]1≤j≤mi

[Mi,j/xi,j]1≤j≤mi
(by (4.17))

= λ~vi.N
′
i,0[xi,j~vi,j/x

′
i,j]1≤j≤mi

[λ~zi,j.M
′
i,j[Mi,j,h/yi,j,h]1≤h≤kij

/xi,j]j∈Ii

= λ~vi.N
′
i,0[xi,j~vi,j/x

′
i,j]1≤j≤mi

[Mi,j/xi,j]j∈Ji
(by (4.16))

= λ~vi.N
′
i,0[M

′
i,j[Mi,j,h[~vi,j,h/~zi,j,h]/yi,j,h]1≤h≤kij

/x′i,j]j∈Ii
[Mi,j~vi,j/x

′
i,j]j∈Ji

= λ~vi.N
′
i [Mi,j,h[~vi,j,h/~zi,j,h]/yi,j,h]

1≤h≤kij

j∈Ii
[Mi,j~vi,j/x

′
i,j]j∈Ji

(by (4.18))



92 Chapter 4. Lexicalized Abstract Categorial Grammars

where ~vi,j,h is the subsequence of ~vi,j corresponding to the subsequence ~zi,j,h

of ~zi,j. Letting

~Mi = 〈|Mi,j~vi,j|β〉j∈Ji
,

~M ′
i = 〈Mi,j,h[~vi,j,h/~zi,j,h]〉

1≤h≤kij

j∈Ii
,

we have
Ni = λ~vi.N

′
i [
~Mi/~x

′
i ][
~M ′

i/~yi]. (4.21)

Note that |Mi,j~vi,j|β ∈ Γ(Σ−
0 ) for j ∈ Ji, and Mi,j,h[~vi,j,h/~zi,j,h] ∈ Γ′(Σ−

0 ) for
j ∈ Ii. Let

L = λ~yw1 . . . wn.a(λ~v1.w1~v
′
1
~M1

~M ′
1) . . . (λ~vn.wn~v

′
n
~Mn

~M ′
n)

where ~y consists of free variables of ~Mi and ~M ′
i other than elements of ~vi.

Since K = λz.z ∈ Γ′′
1(Σ0), by the definition, we have a constant AK,L ∈ C ′

0

such that

τ ′0(AK,L) = [τ0(~y)] → τ ′0(P1) → · · · → τ ′0(Pn) → [p]

L
′(AK,L) = L

Thus, for P = AK,L~yP1 . . . Pn ∈ Λ(Σ′
0), we have

L
′(P ) = L

′(AK,L~yP1 . . . Pn)

= L
′(AK,L~y)(λ~v

′
1~x

′
1~y1.N

′
1) . . . (λ~v

′
n~x

′
n~yn.N

′
n) (by (4.19),(4.20))

= a(λ~v1.N
′
1[
~M1/~x

′
1][
~M ′

1/~y1]) . . . (λ~vn.N
′
n[ ~Mn/~x

′
n][ ~M ′

n/~yn])

= aN1 . . . Nn (by (4.21))

= M .

Case 3. Suppose that M0 = x1M
′
0 for a unary variable x1 in ~x. Then the

head of M ′
0 is a lexical constant a by the linking condition. Let M1 be the

corresponding term in ~M to x1. Since x1 and M1 are unary, either M1 = λz.z
or M1 = λz.y0z for some unary variable y0. Let ~M ′ be ~M minus M1 and ~x ′

be ~x minus x1.
IfM1 = λz.z, then this implies thatM has a good β-expansion (λ~x ′.M ′

0)
~M ′.

This case reduces to Case 2.
Suppose that M1 = λz.y0z. M can be represented as

M = x1M
′
0[M1/x1, ~M

′/~x ′] = y0M
′
0[
~M ′/~x ′] = y0(aN1 . . . Nn). (4.22)

Applying exactly the same discussion as Case 2 to M ′
0[
~M ′/~x ′], for each i ∈

{1, . . . , n}, we get a λ-term N ′
i and sequences of λ-terms ~Mi and ~M ′

i such that



4.3 Lexicalization of Semilexicalized ACGs 93

N ′
i has a good β-expansion, each element of ~Mi is in Γ(Σ−

0 ), each element of
~M ′

i is in Γ′(Σ−
0 ), and

Ni = λ~vi.N
′
i [
~Mi/~x

′
i ][
~M ′

i/~yi], (4.23)

and moreover, we have Pi ∈ Λ(Σ′
0) such that

L
′(Pi) = λ~v ′

i~x
′
i~yi.N

′
i (4.24)

where ~v ′
i consists of variables in ~vi which appear in neither ~Mi nor ~M ′

i , and
every free variable y in N ′

i has type [τ0(y)] ∈ A ′
0 in Pi. Since M1 = λz.y0z ∈

Γ′′
1(Σ

−
0 ), by the definition, we have a constant B such that

τ ′0(B) = [τ0(~y)] → [τ0(y0)] → τ ′0(P1) → · · · → τ ′0(Pn) → q

L
′(B) = λ~yy0w1 . . . wn.y0(a(λ~v1.w1~v

′
1
~M1

~M ′
1) . . . (λ~vn.wn~v

′
n
~Mn

~M ′
n)) (4.25)

where ~y consists of free variables of ~Mi or ~M ′
i other than elements of ~vi. Thus,

for

P = B~yy0P1 . . . Pn,

we have

L
′(P ) = L

′(B)~yy0(λ~v
′
1~x

′
1~y1.N

′
1) . . . (λ~v

′
n~x

′
n~yn.N

′
n) (by (4.24))

= y0(a(λ~v1.N
′
1[
~M1/~x

′
1][
~M ′

1/~y1]) . . . (λ~vn.N
′
n[ ~Mn/~x

′
n][ ~M ′

n/~yn]))
(by (4.25))

= y0(aN1 . . . Nn) (by (4.23))

= M . (by (4.22))

Case 4. Suppose that the head of M0 is a variable x1 in ~x and x1 is
a k-ary variable for some k ≥ 2. Let the corresponding term M1 in ~M be
M1 = λz1~z.M

′′
1 with |z1~z| = k and τ0(M

′′
1 ) ∈ A0. By applying Lemma 4.33

to M ′′
1 with respect to Y = Fv

0(M ′′
1 ) − {z1} 6= ∅ and Z = {z1}, we can find

M ′′′
1 ∈ Γ(Σ−

0 ) and K ∈ Γ′(Σ−
0 ) such that M ′′

1 = M ′′′
1 [K/y0]. By |Fv0(K)| = 1,

λz1.K ∈ Γ′′
1(Σ

−
0 ). Let M ′

1 = λ~z.M ′′′
1 ∈ Γ′′(Σ−

0 ). We have

M1 = λz1.M
′
1[K/y0]. (4.26)

Let M0 = x1L1 . . . Lk (recall that M0 has an atomic type) and ~x divide
into three subsequences x1, ~x

′, ~x′′ so that ~x ′ consists of variables in L1, ~x
′′

consists of variables in Lj for some j ≥ 2. Corresponding to this division, ~M
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is divided into three subsequences M1, ~M ′, and ~M ′′. M can be represented
as

M = M0[ ~M/~x]

= x1L1L2 . . . Lk[M1/x1, ~M
′/~x ′, ~M ′′/~x′′]

= M1L1L2 . . . Lk[ ~M
′/~x ′][ ~M ′′/~x′′]

= M ′
1[K[L1[ ~M

′/~x ′]/z1]/y0]L2 . . . Lk[ ~M
′′/~x′′] (4.27)

by (4.26). Let

M ′ = M ′
1L2 . . . Lk[ ~M

′′/~x′′], (4.28)

M ′
0 = x′1L2 . . . Lk (thus M0 = M ′

0[x1L1/x
′
1])

where τ0(x
′
1) = τ0(M

′
1). By (4.27) and (4.28),

M = M ′[K[L1[ ~M
′/~x ′]/z1]/y0]. (4.29)

By K ∈ Γ′(Σ−
0 ), it contains at least one occurrence of a lexical constant

or a variable of l-ary with l ≥ 2. Therefore, the size of M ′ is strictly
smaller than M . It is not difficult to see that M ′ has a good β-expansion
(λx′1~x

′′.M ′
0)M

′
1
~M ′′, since (λ~x.M0) ~M is a good β-expansion of M . By the

induction hypothesis, we have P ′ ∈ Λ(Σ′
0) such that τ ′0(P

′) = [τ0(M
′)],

L
′(P ′) = M ′, (4.30)

and τ ′0(y) = [τ0(y)] ∈ A ′
0 for every free variable y in M ′. In particular,

τ ′0(y0) = [τ0(y0)].
By the linking condition on x1, the head of Lj is a lexical constant for

each j ∈ {1, . . . , k}. Particularly for j = 1, there are N1,0, . . . , Nn,0 such that
L1 can be written as

L1 = a(λ~v1.N1,0) . . . (λ~vn.Nn,0).

Letting N1, . . . , Nn be such that

L1[ ~M
′/~x ′] = aN1 . . . Nn, (4.31)

we have

M = M ′[K[L1[ ~M
′/~x ′]/z1]/y0]

= M ′[K[aN1 . . . Nn/z1]/y0] (4.32)
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by (4.29) and (4.31). It is not difficult to see that (λ~x ′.L1) ~M
′ is a good β-

expansion of L1[ ~M
′/~x ′] = aN1 . . . Nn, since (λ~x.M0) ~M is a good β-expansion

of M . Applying exactly the same discussion as Case 2 to L1[ ~M
′/~x ′], for each

i ∈ {1, . . . , n}, we have a λ-term N ′
i and sequences ~Mi and ~M ′

i of λ-terms

such that N ′
i has a good β-expansion, each element of ~Mi is in Γ(Σ−

0 ), each

element of ~M ′
i is in Γ′(Σ−

0 ), and

Ni = λ~vi.N
′
i [
~Mi/~x

′
i ][
~M ′

i/~yi], (4.33)

and moreover, we have Pi ∈ Λ(Σ′
0) such that

L
′(Pi) = λ~v ′

i~x
′
i~yi.N

′
i (4.34)

where ~v ′
i consists of variables in ~vi which appear in neither ~Mi nor ~M ′

i , and
every free variable y in N ′

i has type [τ0(y)] in Pi. By the definition, we have
a constant C such that

τ ′0(C) = [τ0(~y)] → τ ′0(P1) → · · · → τ ′0(Pn) → [τ0(K)]

L
′(C) = λ~yw1 . . . wn.K[a(λ~v1.w1~v

′
1
~M1

~M ′
1) . . . (λ~vn.wn~v

′
n
~Mn

~M ′
n)/z1] (4.35)

where ~y consists of free variables of K, ~Mi, or ~M ′
i other than z1, ~vi. Thus,

for

P = P ′[C~yP1 . . . Pn/y0],

we have

L
′(P ) = M ′[L ′(C)~y(λ~v ′

1~x
′
1~y1.N

′
1) . . . (λ~v

′
n~x

′
n~yn.N

′
n)/y0] (by (4.30), (4.34))

= M ′[K[a(λ~v1.N
′
1[
~M1/~x

′
1][
~M ′

1/~y1])

. . . (λ~vn.N
′
n[ ~Mn/~x

′
n][ ~M ′

n/~yn])/z1]/y0] (by (4.35))

= M ′[K[aN1 . . . Nn/z1]/y0] (by (4.33))

= M . (by (4.32))

Theorem 4.37. For every semilexicalized ACG G ∈ G(3, n), there is a
lexicalized ACG G ′ ∈ G(3, n+ 1) such that

O(G ′) = {R ∈ O(G ) | R contains a constant }.



96 Chapter 4. Lexicalized Abstract Categorial Grammars

4.3.6 Schabes et al.’s Lexicalization and Ours

Although our notion of lexicalization differs from the one by Schabes et
al. [47, 48], what we have done is not very far from their definition. They
define the notion of lexicalization in a strong sense, where it preserves not only
the string language but also the tree language yielding the string language.
This definition requires grammars that should be lexicalized to be finitely
ambiguous, i.e., the tree language contains at most finitely many trees that
yield the same string. Their motivation behind the definition would be to
preserve the syntactic structures as well as the surface structures. If we regard
both tree languages and abstract languages as syntactic structures that yield
string languages and object languages as surface structures, respectively, one
might think the definition of “lexicalization of ACGs” should be strengthened
in analogy with Schabes et al.’s definition so that the abstract languages
of the given ACG and the resultant lexicalized ACG coincide. However,
this definition seems too rigorous and there would be very few interesting
subclasses of ACGs admit strong lexicalization in this sense.

We alternatively propose to define the notion of “strong lexicalization
of ACGs” analogous to Schabes et al.’s definition so that an ACG G =
〈Σ0,Σ1,L , s〉 is converted into a lexicalized ACG G ′ = 〈Σ′

0,Σ1,L ◦ L ′, s′〉
where A(G ) = L ′(A(G ′)) holds. According to this definition, one can “re-
cover” the original abstract language from the resultant ACG. Actually, this
is what we have done in the latter half of our lexicalization method on the pre-
processed ACGs which have neither nullary nor unary nonlexical constants.
Moreover, when we assume that input semilexicalized ACGs are finitely am-
biguous in the sense that every element of the object language has finitely
many abstract terms mapped to it, it is possible to modify the preprocessing
that eliminates nullary and unary nonlexical constants so that the resultant
grammar can also recover the original abstract language. Conversely, one
may think of the preprocessing as elimination of infinite ambiguity from the
given semilexicalized ACG. This way our whole algorithm becomes a strong
lexicalization method. Therefore, our lexicalization method has a close con-
ceptual similarity to Schabes et al.’s notion of lexicalization.

In the sequel, we concretely see the relation between Schabes et al.’s lex-
icalization and ours through lexicalization of finitely ambiguous CFGs. Here
our lexicalization method means modified lexicalization method, which recov-
ers the original abstract languages. As Schabes et al.’s lexicalization method
converts a finitely ambiguous CFG into a “strongly equivalent” lexicalized
TAG in the sense that the tree language of the TAG is the set of deriva-
tion trees of the CFG, our lexicalization method for semilexicalized ACGs
converts the ACG GG ∈ Gstring(2, 2) encoding a finitely ambiguous CFG
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CFG G TAG G′

GG ∈ Gstring(2, 2) GG′ ∈ Glex
tree(2, 2(mon))

G l
G ∈ Glex

string(2, 3)

lexicalization in the sense of Schabes

canonical method for converting
tree ACGs into string ACGs

our modified
lexicalization

Figure 4.1: Our lexicalization of a CFG

G into the ACG G l
G ∈ Glex

string(2, 3) encoding a lexicalized TAG G′ strongly
equivalent to G “as a string generator”. That a string ACG G l

G encodes
a TAG G′ as a string generator means that G l

G is obtained from the ACG
GG′ ∈ Glex

tree(2, 2(mon)) encoding G′ by the canonical method for transform-
ing a tree ACG into a string ACG generating the yield string language of the
original tree ACG (see Proposition 5.5 for the canonical method). Since such
GG′ and G′ are effectively computable from G l

G, our method gives alternative
construction for Schabes’s theorem that every finitely ambiguous CFG has a
strongly equivalent lexicalized TAG. This is illustrated in Figure 4.1.

More direct comparison would be possible when modifying the definition
of “lexicalized ACGs”. For the accordance with Schabes et al.’s notion of
lexicalized grammar, here we introduce the notion of “strongly lexicalized tree
ACGs”. We say that an abstract constant of a tree ACG is strongly lexical iff
it is mapped to a term containing an object constant of an atomic type. Then
the set C0 of abstract constants is partitioned into D0 and E0 where D0 is the
set of strongly lexical abstract constants. Note that C

−
0 ⊆ E0 and D0 ⊆ C

+
0 .

We then call the tree ACG strongly lexicalized iff E0 is the empty set. It
is not difficult to modify the first half of our lexicalization method, which
eliminates nullary and unary constants in C

−
0 , so that it eliminates nullary

and unary constants in E0, if the input ACG encodes a finitely ambiguous
CFG in the sense of Schabes et al. Besides, recall that the second half of our
lexicalization method depends only on the fact that every constant in C

−
0

has a k-ary second-order type for some k ≥ 2. Thus, replacing C
+
0 with D0

and C
−
0 with E0 in our procedure, we get a strong lexicalization method that

completely satisfies Schabes et al.’s notion of lexicalization of CFGs.
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4.4 Summary

This chapter has discussed lexicalized ACGs, in particular, lexicalization of
semilexicalized ACGs. As seen in Section 4.2, to be lexicalized can be thought
of as a desirable restriction on ACGs not only from the lexicalists’ point of
view, but also from the point of view of the computational complexity.

In section 4.3, we have presented a lexicalization method for semilex-
icalized ACGs, where every nonlexical abstract constant has a type of at
most second-order. Our basic strategy for lexicalizing semilexicalized ACGs
is as follows. As a preparation, we first eliminate nullary or unary nonlex-
ical constants from the given grammar. Then for the resultant grammar
G = 〈Σ0,Σ1,L , s〉, we construct a new ACG G ′ = 〈Σ′

0,Σ0,L
′, s′〉 so that

O(G ′) = A(G ) and L ′(A) contains a lexical abstract constant in C
+
0 with

some finite number of nonlexical constants in C
−
0 for every A ∈ C ′

0. We
have presented three kinds of lexicalization methods depending on the or-
der of given ACGs. While the lexicalization method for ACGs with fourth
or higher-order abstract vocabularies preserves the orders of the lexicons,
our lexicalization methods for ACGs with second and third-order abstract
vocabularies both increase the orders of the lexicons by one.

Our result gives another proof for the theorem that every semilexicalized
ACG generates a language in NP, which has been proven by Salvati [43].

Moreover, our lexicalization method for second-order ACGs, though it
does not preserves the orders of the lexicons, entails that every LCFRS has
an equivalent lexicalized LCFRS modulo the empty string, where an LCFRS
is said to be lexicalized iff the description of each function assigned to each
production includes at least one terminal symbol. It is not difficult to modify
Salvati’s conversion [45] from a string second-order ACG G ∈ Gstring(2, n)
into an equivalent LCFRS so that it preserves lexicalization. Therefore, the
ACG G ∈ Gstring(2, 4) encoding an LCFRS, which has an equivalent lexical-
ized ACG G ′ ∈ Glex

string(2, 5) modulo the empty string by our lexicalization,
has an equivalent lexicalized LCFRS modulo the empty string.

For the sake of generality, we have defined the notion of lexicalized ACGs
so that it does not comprehend Schabes et al.’s definition of lexicalized
TAGs [47, 48]. Nevertheless, as discussed in Section 4.3.6, our lexicaliza-
tion method can be modified so that it entails Schabes et al.’s theorem that
every finitely ambiguous CFG has a strongly equivalent lexicalized TAG.

Therefore, our lexicalization method partially generalizes the research by
Schabes et al. The result of this chapter, as well as the previous chapter,
strengthens de Groote and Pogodalla’s view that ACGs can be the kernel of
a grammatical framework; not only well known grammar formalisms them-
selves, but also transformations of existing grammar formalisms are encoded
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in ACGs.

Future Work

It is future work whether or not we can lexicalize second and/or third-order
ACGs with preserving the orders of the lexicons. It is known that several
subclasses of second-order string ACGs are closed under lexicalization, where
the order of the lexicons is preserved.

Recall that Gstring(2, 2) is equivalent to the class of context-free grammars.
According to the straightforward encoding by de Groote and Pogodalla [15,
19], if a CFG is “lexicalized” in the sense that every production contains
a terminal symbol in its right-hand side, then the corresponding second-
order ACG is lexicalized, and vice versa. The fact that every CFG that
does not generate the empty string has an equivalent lexicalized CFG, e.g.,
Greibach normal form, implies that every G ∈ Gstring(2, 2) has an equivalent
G ′ ∈ Glex

string(2, 2) modulo the empty string.
As mentioned above, every string second-order ACG G ∈ Gstring(2, n)

has an equivalent lexicalized LCFRS modulo the empty string, which has an
equivalent lexicalized ACG G ′ ∈ Glex

string(2, 4).
Moreover, by Schabes et al.’s work on lexicalization of TAGs [47,48], it is

not hard to see that the subclass of second-order string ACGs whose lexicons
map an atomic type to either str or str → str is closed under lexicalization.

The reason why we cannot preserve the order of the lexicon is that our
lexicalization method is designed to be able to “recover” the original ab-
stract language, in the sense that there is a lexicon from the new abstract
vocabulary to the original abstract vocabulary such that the original abstract
language is exactly the image of the new abstract language, except for the
steps eliminating nullary and unary nonlexical constants. In order to lexical-
ize second-order ACGs with preserving the orders of the lexicons, it seems
inevitable to give up recovering the original abstract languages.

If each subclass G(2, n) is closed under lexicalization, it might entail that
some grammar formalisms, e.g., linear CFTGs, admit lexicalization, with or
without help of a similar discussion in Section 4.3.6.

On the other hand, it seems difficult to lexicalize general third-order
ACGs, because there is a third-order ACG that simulates vector addition
systems (Proposition 2.18. See also Proposition 5.7), while every lexicalized
ACG generates an NPTIME language (Proposition 4.3).9

9The author could not find a reference on the complexity of a fixed Petri-net reachability
set.





Chapter 5

Two-Dimensional Abstract
Categorial Grammars

5.1 Introduction

If two ACGs G1 and G2 share the same abstract vocabulary and the distin-
guished type, i.e., A(G1) = A(G2), each element P1 of O(G1) is associated
with terms P2 in O(G2) through the elements M of A(G1) = A(G2) which
are mapped to P1 and P2. This way, ACGs can represent relations of two
languages. It is convenient to give a formalization to this paradigm.

Definition 5.1. A two-dimensional ACG (2D-ACG) is a sextuple G =
〈Σ0,Σ1,Σ2,L1,L2, s〉 such that

• Σ0 is a higher-order signature, called the abstract vocabulary,

• Σi for i ∈ {1, 2} is a higher-order signature, called the i-th object vo-
cabulary,

• Li is a lexicon from Σ0 to Σi (i-th lexicon),

• s ∈ A0 is the distinguished type.

The i-th projection of G is defined as Gi = 〈Σ0,Σi,Li, s〉. The abstract
language, object language and i-th projection of the object language are re-
spectively defined as

A(G ) = { |M |βη ∈ Λ(Σ0) |M is a closed linear λ-term of type s }

O(G ) = { 〈|L1(M)|βη, |L2(M)|βη〉 |M ∈ A(G ) }

Oi(G ) = {Pi | Pi ∈ O(Gi) for Gi the i-th projection of G }

101
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Moreover, the classification of (one-dimensional) ACGs can be used for 2D-
ACGs. For instance, Gtree,string(2, 1(r), 4) represents the class of ACGs whose
first projection belongs to Gtree(2, 1(r)) and second projection belongs to
Gstring(2, 4).

This way we can define k-dimensional ACGs (kD-ACGs) for any k.
Though symmetric treatment of syntax and semantics of natural language

is an important appeal of ACGs, there is little mathematical research on 2D-
ACGs. In this chapter, we discuss the expressive power on relations of 2D-
ACG. Although it is rather important what kind of relations between strings
and meaning representations can be expressed by 2D-ACGs, we have no well-
known measure to characterize the class of relations between strings and
meanings. Therefore, we evaluate the expressive power of 2D-ACGs through
encoding by 2D-ACGs of some well-known tree transducer formalisms that
define relations between trees and trees, or trees and strings.

Section 5.2 presents some examples of 2D-ACGs, which imply some clo-
sure properties of string ACGs. A fundamental question is whether several
mathematical properties of 1D-ACGs still hold for 2D-ACGs. We show that
every second-order 2D-ACG generates a PTIME language as every second-
order 1D-ACG does (Theorem 2.11) in Section 5.3. Moreover, we show
that every second-order string 2D-ACG in Gstring(2, n1, n2) has an equivalent
2D-ACG Gstring(2, 4, 4), like second-order string 1D-ACGs (Theorem 2.6).
This is shown in Section 5.5, after we prove that every deterministic tree
walking transducer can be encoded by a second-order 2D-ACG. Section 5.4
shows that the class of linear macro tree transducers exactly corresponds to
Gtree,string(2, 1(sr), 2).

Related Work

For a binary relation R, the domain R1 of R is defined as

R1 = {P | 〈P,Q〉 ∈ R for some Q }

and the range R2 of R is defined as

R2 = {Q | 〈P,Q〉 ∈ R for some P }.

Finite state transducers are simple extensions of finite state-automata
which write some possibly empty string for each transition. The output
string by a transducer for an input string is defined as the concatenation
of the strings written during the transition steps. A finite state transducer
translates a regular language into a regular language. For a formal definition
and basic properties of finite state transducers, see a standard text book
(e.g., [3]). De Groote establishes the following result.
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Σ0

ΣL

Σ1 Σ2

LL

LΦ LΨ

A bimorphism 〈L,Φ,Ψ〉 is represented
by 〈Σ0,Σ1,Σ2,LΦ ◦ LL,LΨ ◦ LL, s〉,
if L is represented by 〈Σ0,ΣL,LL, s〉.

Figure 5.1: Bimorphism and ACG

Proposition 5.2 (de Groote [15]). For every finite state transducer T ,
there is a 2D-ACG G ∈ Gstring,string(2, 2, 2) such that

R(T ) = O(G )

where R(T ) denotes the relation defined by T .

Here we would like to emphasize that even though it is known that each
of the domain and range of a relation is represented by an ACG, the ques-
tion whether the relation itself can be represented by a 2D-ACG is not
trivial. De Groote has shown Proposition 5.2 using Nivat’s Theorem [39],
which establishes the equivalence between finite state transducers and bi-
morphisms. A bimorphism B is a triple 〈L,Φ,Ψ〉 where L is a regular
language, Φ and Ψ are homomorphisms. The relation defined by B is given
as R(B) = { 〈Φ(w),Ψ(w)〉 | w ∈ L}. We see the straightforward correspon-
dence between homomorphisms and first-order lexicons from string signa-
tures to string signatures. Together with the fact that regular languages are
represented by ACGs belonging to Gstring(2, 2), this homomorphism-lexicon
correspondence and Nivat’s Theorem entail Proposition 5.2 (see Figure 5.1).

Tree bimorphisms are a tree-version of bimorphisms. A tree bimorphism
B = 〈L,Φ,Ψ〉 consists of a regular tree language L and two tree homomor-
phisms Φ and Ψ. Instead of giving the definition of tree bimorphisms in the
usual way, it is enough to state just that a tree homomorphism is a first-order
λK-lexicon1 from a tree signature to a tree signature. The relation defined by
B is given as R(B) = { 〈Φ(M),Ψ(M)〉 |M ∈ L}. As (string) bimorphisms
are extended to tree bimorphisms, finite state transducers are extended to
tree transducers (see [3] for instance). It is known that bottom-up tree trans-
ducers that are allowed to translate without reading the label on the current

1A λK-lexicon can map a constant to non-linear λ-terms. See Section 3.2.
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node (ε-rules) correspond to tree-bimorphisms whose first homomorphisms
Φ are semi-relabeling, and bottom-up tree transducers without ε-rules cor-
respond to tree-bimorphisms whose first homomorphisms Φ are relabeling.
Moreover, some kinds of restrictions, such as non-duplication, non-deletion,
etc., on transducers and tree-homomorphisms preserve the equivalence. In
particular, if a transducer is linear (non-duplicating and non-deleting), then
Ψ is linear in the corresponding bimorphism. By the straightforward corre-
spondence between tree-homomorphisms and lexicons, and between regular
tree grammars and Gtree(2, 1(r)) (Figure 5.1 is still valid for tree cases), we
have the following corollary.

Corollary 5.3. Every linear bottom-up tree transducer has an equivalent 2D-
ACG belonging to Gtree,tree(2, 1(sr), 1), and vice versa. Every linear bottom-
up tree transducer without ε-rules has an equivalent 2D-ACG belonging to
Gtree,tree(2, 1(r), 1), and vice versa.

Since linear bottom-up tree transducers and linear top-down tree trans-
ducers define the same class of tree languages, the above corollary holds
for linear top-down transducers. We note that though all Gtree(2, 1(r)),
Gtree(2, 1(sr)) and Gtree(2, 1) define the class of regular tree languages, we
cannot drop the condition that “the first lexicon is (semi)relabeling” from
the above statement.

Shieber [51] has shown that the relations defined by synchronous tree sub-
stitution grammars (STSGs) can be represented by linear tree bimorphisms,
where a bimorphism is said to be linear iff both tree homomorphisms are
linear. This immediately implies the following corollary.

Corollary 5.4. Synchronous tree substitution grammars can be represented
by 2D-ACGs belonging to Gtree,tree(2, 1, 1).

In fact, Yamada [58] has given a direct encoding of STSGs by 2D-ACGs
in Gtree,tree(2, 1, 1). The converse relation is open. Shieber has presented
a method that constructs a “corresponding” STSG GB for a given linear
tree bimorphism B = 〈L,Φ,Ψ〉 such that the tree relation defined by B

is obtainable from the tree relation defined by the STSG by a relabeling
homomorphism.

5.2 Examples

Proposition 5.5. For every tree ACG G ∈ Gtree(m,n), one can find a 2D-
ACG G ′ ∈ Gtree,string(m,n, n+ 1) such that

O(G ′) = { 〈P, yield(P )〉 | P ∈ O(G ) }.
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Proof. For G = 〈Σ0,Σ1,L , s〉, let a string signature Σ2 and a lexicon L2 :
Σ1 → Σ2 be defined by

A2 = {o},

C2 = { c ∈ C1 | τ1(c) = o },

τ2(c) = str for all c ∈ C2,

L
′(o) = str

L
′(c) =

{
c if c ∈ C1 ∩ C2

λxstr
1 . . . xstr

n .x1 + · · ·+ xn if τ1(c) = on → o with n ≥ 1.

The 2D-ACG G ′ = 〈Σ0,Σ1,Σ2,L ,L ′ ◦L , s〉 satisfies the desired condition.

Proposition 5.6 (Reverse). For every string ACG G ∈ Gstring(m,n), one
can find a 2D-ACG G ′ ∈ Gstring,string(m,n, n+ 1) such that

O(G ′) = { 〈/w/, /wR/〉 | /w/ ∈ O(G ) }

where wR denotes the reverse of w.

Proof. For G = 〈Σ0,Σ1,L , s〉, let Σ′
0 and Σ′

1 be respectively the extensions
of Σ0 and Σ1 such that

Σ′
0





A ′
0 = A0 ∪ {s′} (s′ 6∈ A0),

C ′
0 = C0 ∪ {#} (# 6∈ C0),

τ ′0 = τ0 ∪ {# 7→ s→ s′ },

Σ′
1





A ′
1 = A1 = {o},

C ′
1 = C1 ∪ {#} (# 6∈ C1),

τ ′1 = τ1 ∪ {# 7→ o },

and define L ′ and L ′′ as extensions of L by

L
′ : Σ′

0 → Σ1

{
L ′(s′) = str ,

L ′(#) = λzstr .z,
L

′′ : Σ′
0 → Σ′

1

{
L ′′(s′) = o,

L ′′(#) = λzstr .z#.

Thus, the ACG 〈Σ′
0,Σ1,L

′, s′〉 is equivalent to G and the ACG 〈Σ′
0,Σ

′
1,L

′′, s′〉
generates exactly O(G ) with the endmarker #.

Let a new second-order lexicon L R : Σ′
1 → Σ1 be defined as

L
R(o) = str

L
R(a) = λxstr .x+ a

L
R(#) = /ε/.

We easily see that

L
R(a1(. . . (an#) . . . )) = /an . . . a1/.
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Thus, for G ′ = 〈Σ′
0,Σ1,Σ1,L

′,L R ◦ L ′′, s′〉, we have

O(G ′) = { 〈/w/, /wR/〉 | /w/ ∈ O(G ) }.

Suppose that all the elements of an alphabet C are ordered as 〈c1, . . . , cn〉.
The sorted string Sort(w) of a string w ∈ C ∗ is defined as

Sort(w) = cm1
1 . . . cmn

n

where mi = #ci
(w) for each i ∈ {1, . . . , n}.

Proposition 5.7 (Sort). For every string ACG G ∈ Gstring(m,n), there is
a 2D-ACG G ′ ∈ Gstring,string(max{3, m}, n, n) such that

O(G ′) = { 〈/w/, /Sort(w)/〉 | /w/ ∈ O(G ) }.

Proof. Let G = 〈Σ0,Σ1,L , s〉 and suppose that the elements of the object
vocabulary C1 are ordered as 〈c1, . . . , cn〉. We construct a 2D-ACG G ′ =
〈Σ′

0,Σ1,Σ1,L
′,L S, sn〉 as follows. Let

A
′
0 = A0 ∪ { qi, si | 1 ≤ i ≤ n } (qi, si 6∈ A0),

C
′
0 = C0 ∪ {Bi,Ci | 1 ≤ i ≤ n } (Bi,Ci 6∈ A0),

τ ′0(a) = qk1
1 → · · · → qkn

n → τ0(a) for ki = #ci
(L (a)) for a ∈ C0

τ ′0(Bi) = si−1 → si where s0 = s,

τ ′0(Ci) = (qi → si) → si.

For P ∈ Λ(Σ1), let P̃ denote the term obtained from P by replacing the

j-th occurrence of each constant ci with a fresh variable xi,j, i.e., P̃ is the
constant-free term such that

P = P̃ [ci/xi,j]
1≤j≤ki

1≤i≤n

for the number ki of the occurrences of ci in P . We define

L
′(p) = L

S(p) =

{
L (p) if p ∈ A0

str otherwise

L
′(a) = L

S(a) = λxq1

1,1 . . . x
q1

1,k1
. . . xqn

n,1 . . . x
qn

n,kn
.L̃ (a)

for ki = #ci
(L (a)) for a ∈ C0

L
′(Bi) = L

S(Bi) = λxstr .x,

L
′(Ci) = λxstr→str .x/ci/.

L
S(Ci) = λxstr→str .x/ε/+ /ci/.

We need to show
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1. 〈/w1/, /w2/〉 ∈ O(G ′) implies #ci
(/w1/) = #ci

(/w2/) for all ci ∈ C1,

2. /w/ ∈ O2(G
′) implies w ∈ {c1}

∗ . . . {c1}
∗,

3. O(G ) = O1(G
′),

(1) is obvious.
(2) If N ∈ A(G ′), then N has the form

N = Cn(λxqn

n,1.Cn(λxqn

n,2. . . .Cn(λxqn

n,mn
.Bn(

...

C1(λx
q1
1,1.C1(λx

q1
1,2. . . .C1(λx

q1
1,m1

.B1N
′) . . . )) . . . )) . . . )).

Thus we see (2) as

L
S(N) = L

S(N ′)[/ε//xi,j]
1≤j≤mi

1≤i≤n + /cm1
1 /+ · · · + /cmn

n / = /cm1
1 . . . cmn

n /.

(3) We show O(G ) ⊆ O1(G
′). Suppose that M ∈ A(G ) is given. Let k

be the total number of all occurrences of constants in M . That is,

M = M ′[a1/z1, . . . , ak/zk]

for a constant-free term M ′ with Fv(M ′) = {z1, . . . , zk}. For 1 ≤ i ≤ n and
1 ≤ j ≤ k, let

lj,i =
∑

1≤h≤j

#ci
(L (ah))

mi = lk,i = #ci
(L (M)).

Let

N ′ = M ′[a1〈x
qi

i,j〉
1≤j≤l1,i

1≤i≤n /z1, a2〈x
qi

i,j〉
l1,i+1≤j≤l2,i

1≤i≤n /z2, . . . , ak〈x
qi

i,j〉
lk−1,i+1≤j≤lk,i

1≤i≤n /zk].

Indeed N ′ is well-typed on Σ′
0 and

L (M) = L
′(N ′)[ci/xi,j]

1≤j≤mi

1≤i≤n .

For

N = Cn(λxqn

n,1.Cn(λxqn

n,2. . . .Cn(λxqn

n,mn
.Bn(

...

C1(λx
q1
1,1.C1(λx

q1
1,2. . . .C1(λx

q1
1,m1

.B1N
′) . . . )) . . . )) . . . )),

we have N ∈ A(G ′) and L ′(N) = L (M).
The converse direction O1(G

′) ⊆ O(G ) is shown exactly symmetrically.
We easily see that every occurrence of a constant a in N ∈ A(G ) accompanies
variables as a~x1 . . . ~xn where the length of each ~xi is #ci

(L (a)).
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Proposition 5.8 (Reordering). For every string ACG G ∈ Gstring(m,n),
there is a 2D-ACG G ′ ∈ Gstring,string(max{3, m}, n, n) such that

O(G ′) = { 〈/w/, /v/〉 | /w/ ∈ O(G ), #ci
(w) = #ci

(v) for all ci ∈ C1 }.

Proof. Replace each si in the proof of Proposition 5.7 with s = s0.

5.3 One-Dimensionality and

Two-Dimensionality

One may wonder whether a 1D-ACG can encode a 2D-ACG. Formally putting,
given a 2D-ACG G , can we construct an ACG G ′ such that

O(G ′) = {λw.wP1P2 | 〈P1, P2〉 ∈ O(G ) }?

This is an open problem at this moment. We have just a partial answer to
the question.

Proposition 5.9. For every 2D-ACG G ∈ G(2, n1, n2), there is an ACG
G ′ ∈ G(2, n) for n = max{n1, n2} + 2 such that

O(G ′) = {λw.wP1P2 | 〈P1, P2〉 ∈ O(G ) }.

Proof. Let G = 〈Σ0,Σ1,Σ2,L1,L2, s〉 ∈ G(2, n1, n2). We define the corre-
sponding ACG G ′ ∈ G(2, n) with n = max{n1, n2} + 2 to have the same
abstract vocabulary as G . The new lexicon L maps each atomic type p to

L (p) = (L1(p) → L2(p) → o) → o.

For each a ∈ C0 of type p1 → · · · → pk → q, if L1(a) = λx1 . . . xk.P1 and
L2(a) = λy1 . . . yk.P2, then we define L (a) as

L (a) = λz1 . . . zkw.z1(λx1y1.z2(λx2y2. . . . zk(λxkyk.wP1P2) . . . )).

It is easy to check that for every variable-free M ∈ Λ(Σ0) of an atomic type,
it holds that

L (M) = λwτ1(L1(M))→τ2(L2(M))→o.wL1(M)L2(M).

It is easy to extend the above proposition for second-order kD-ACGs for
k ≥ 2.

Corollary 5.10. Every second-order kD-ACG G ∈ G(2, n1, . . . , nk) gener-
ates a PTIME language.
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Proof. By Proposition 5.9 and Theorem 2.11.

Corollary 5.11. For every finite state transducer T , there is a linear context-
free rewriting system GT such that

L(GT ) = {w1#w2 | 〈w1,w2〉 ∈ R(T ) }

where # is a new symbol not in T and L(GT ) denotes the language defined
by GT .

Proof. For a 2D-ACG G T ∈ Gstring,string(2, 2, 2) representing the relation de-
fined by the finite state transducer T , let G = 〈Σ0,Σ1,L , s〉 ∈ Gstring(2, 4)
be the one-dimensional representation of G T constructed by Proposition 5.9.

O(G ) = {λw.w/w1//w2/ | 〈w1,w2〉 ∈ R(T ) }.

Let G ′ = 〈Σ′
0,Σ

′
1,L

′, s′〉 ∈ Gstring(2, 4) be the extension of G obtained by
adding the lexical entry

〈#, s→ s′, λw.w(λxy.x+ # + y)〉

where s′ is a new abstract atomic type mapped to str . Then,

O(G ′) = { /w1#w2/ | 〈w1,w2〉 ∈ R(T ) }.

The equivalence between LCFRSs and Gstring(2, 4) (Theorem 2.6) completes
the proof.

5.4 Linear Macro Tree Transducers

One well-known extension of top-down tree transducers is macro tree trans-
ducers (MTTs) [2,6], which are obtained by adding the feature of context-free
tree grammars to top-down tree transducers. Their output tree languages
for fixed input form context-free tree languages. Even though RTGs and lin-
ear CFTGs are equivalent to ACGs belonging to Gtree(2, 1) and Gtree(2, 2)
respectively, it is not obvious whether linear MTTs are also equivalent to
Gtree,tree(2, 1, 2). In fact we show the following proposition in this section.

Theorem 5.12. Linear ε-free macro tree transducers are equivalent to 2D-
ACGs belonging to Gtree,tree(2, 1(r), 2). Linear macro tree transducers are
equivalent to 2D-ACGs belonging to Gtree,tree(2, 1(sr), 2).

Our translation method is essentially same as the proof of the correspon-
dence between CFTGs and MTTs by Engelfriet and Vogler [7]. While the
CFTG obtained by their construction from a given MTT may have infinitely
many nonterminal symbols and production rules, the CFTG obtained from
a given linear MTT through our method is a usual linear CFTG consisting
of finitely many production rules.
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Definition

In this section, we provide two fixed special disjoint sets of variables, X =
{x1, . . . , } and Y = {y1, . . . }, and let Xk = {x1, . . . , xk}, Yk = {y1, . . . , yk}.
For usual variables, we use letters z, z0, z1, z2, · · · ∈ Z .

For fixed ranked alphabets Q and Σ, let RHS(Q,Σ,X ,Y ) ⊆ T(Q∪Σ∪
X ∪ Y ) be the smallest set RHS such that

• Y ⊆ RHS,

• if f ∈ Σ(m) and M1, . . . ,Mm ∈ RHS, then fM1 . . .Mm ∈ RHS,

• if q ∈ Q(1+n), xi ∈ X , and N1, . . . , Nn ∈ RHS, then qxiN1 . . . Nn ∈
RHS.

A macro tree transducer (MTT) is a quintuple T = 〈Σ1,Σ2, Q,∆, qs〉
where

• Σ1, Σ2 and Q are ranked alphabets such that (Σ1 ∪ Σ2) ∩ Q = ∅ and
Q(0) = ∅,

• qs ∈ Q(1) is called the initial state,

• ∆ is the set of transition rules each of which is of the form

– q(fx1 . . . xm)y1 . . . yn →M , or

– qx1y1 . . . yn → N (called an ε-rule),

where f ∈ Σ
(m)
1 , q ∈ Q(1+n), M ∈ RHS(Q,Σ2,Xm,Yn) and N ∈

RHS(Q,Σ2,X1,Yn).

An MTT is ε-free if it has no ε-rule.
For M,M ′ ∈ T(Q ∪ Σ1 ∪Σ2) and ρ = q(fx1 . . . xm)y1 . . . yn → K ∈ ∆, we

write M `ρ
T M

′ iff there is M0 ∈ T(Q ∪ Σ1 ∪ Σ2 ∪ {z}) such that

• z occurs exactly once in M0,

• M = M0[q(fM1 . . .Mm)N1 . . . Nn/z],

• M ′ = M0[K[M1/x1, . . . ,Mm/xm, N1/y1, . . . , Nn/yn]/z].

For an ε-rule ρ = qx1y1 . . . yn → K ∈ ∆, we write M `ρ
T M ′ iff there is

M0 ∈ T(Q ∪ Σ1 ∪ Σ2 ∪ {z}) such that

• z occurs exactly once in M0,
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• M = M0[qM1N1 . . . Nn/z],

• M ′ = M0[K[M1/x1, N1/y1, . . . , Nn/yn]/z].

`T is defined to be the union of `ρ
T for all ρ ∈ ∆ and `∗

T is the reflexive and
transitive closure of `T . The relation R(T ) determined by T is given as

R(T ) = { 〈M,N〉 |M ∈ T(Σ1), N ∈ T(Σ2), and qsM `∗
T N }.

We say that an MTT T is linear iff

• for every q(fx1 . . . xm)y1 . . . yn → K ∈ ∆, each xi and yj appears in K
exactly once for 1 ≤ i ≤ m and 1 ≤ j ≤ n and

• for every qx1y1 . . . yn → K ∈ ∆, each x1 and yj appears in K exactly
once for 1 ≤ j ≤ n.

If T is linear, then for a rule ρ = q(fx1 . . . xm)y1 . . . yn → K ∈ ∆, each xi has
the unique parent qi ∈ Q in K. That is, for some K0 ∈ T(Σ2 ∪ Y ∪ Z ) and
~Ki consisting of trees in T(Σ2 ∪ Y ∪ Z ), K can be represented as

K = K0[qk1xk1
~Kk1/z1] . . . [qkmxkm

~Kkm/zm]

where 〈k1, . . . , km〉 is a permutation of 〈1, . . . , m〉. Note that the above does
not represent a simultaneous substitution, but a sequential substitution; e.g.,
z2 may appear in ~Kk1. For instance, if

K ≡ a
(
q1x1b(a(a(q2x2b))y1)

)
(q3x3b),

where a ∈ Σ
(2)
2 , b ∈ Σ

(0)
2 , q1 ∈ Q(3), q2, q3 ∈ Q(2), then K can be represented

as
K ≡ az1z3[q1x1b(a(az2)y1)/z1][q2x2b/z2][q3x3b/z3].

Technical Lemmas

For some technical reason, we extend the definition of `T⊆ T(Q∪Σ1 ∪Σ2)×
T(Q∪Σ1∪Σ2) to define the relation on T(Q∪Σ1∪Σ2∪Z )×T(Q∪Σ1∪Σ2∪Z )
in the obvious way.

Definition 5.13. For fixed ranked alphabets Q, Σ1, Σ2, the set of sentential
forms SF (Q,Σ1,Σ2,Z ) ⊆ T(Q∪Σ1 ∪Σ2 ∪Z ) is defined as the smallest set
SF such that

• Z ⊆ SF ,
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• if f ∈ Σ
(m)
2 and N1, . . . , Nm ∈ SF , then fN1 . . . Nm ∈ SF ,

• if q ∈ Q(1+n), M ∈ T(Σ1), and N1, . . . , Nn ∈ SF , then qMN1 . . . Nn ∈
SF .

We simply write SF for SF (Q,Σ1,Σ2,Z ) if Q,Σ1,Σ2 are obvious from
the context.

Lemma 5.14 (Engelfriet and Vogler [7]). Let T = 〈Σ1,Σ2, Q, qs,∆〉
be an MTT. For all M ∈ SF (Q,Σ1,Σ2,Z ) and M ′, M `T M ′ implies
M ′ ∈ SF (Q,Σ1,Σ2,Z ).

Clearly qsM ∈ SF for M ∈ T(Σ1), so we can ignore trees that are not in
the sentential form.

If L ∈ SF , then L can be represented as

L = K0[q1M1
~K1/z1] . . . [qmMm

~Km/zm]

where each ~Ki is a sequence of trees in T(Σ2 ∪ Z ), K0 ∈ T(Σ2 ∪ Z ), Mi ∈

T(Σ1) and each zj with j ∈ {1, . . . , m} occurs in K0, ~K1, . . . , ~Km exactly
once. (We assume that z1, . . . , zm do not occur in L.)

Lemma 5.15. Let T = 〈Σ1,Σ2, Q, qs,∆〉 be a linear MTT. Suppose that
L ∈ SF is represented as

L = z1[P1/z1] . . . [Pk/zk]

where Pi ∈ SF , zi occurs in z1, P1, . . . , Pi−1 exactly once, and zi does not
occur in Pi, . . . , Pk for each i ∈ {1, . . . , k}. If L `ρ

T L′, then there exist
j ∈ {1, . . . , k} and P ′

j ∈ SF such that

1. Pj `
ρ
T P

′
j,

2. L′ = z1[P
′
1/z1] . . . [P

′
k/zk] where P ′

i = Pi for i 6= j,

3. P ′
i ∈ SF for each i ∈ {1, . . . , k}.

4. zi occurs in z1, P
′
1, . . . , P

′
i−1 exactly once, and zi does not occur in

P ′
i , . . . , P

′
k for each i ∈ {1, . . . , k}.

Proof. If L `ρ
T L

′, we have two cases.
Case 1. Suppose that ρ is not an ε-rule.

ρ = q(f~x)~y → K
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By the definition of a derivation, L and L′ are written as

L = L0[q(f ~M) ~N/z]

L′ = L0[K[ ~M/~x, ~N/~y]/z].

Let j be such that the focused occurrence of q in L appears in Pj. Since zj

occurs exactly once in z1, P1, . . . , Pj−1, the occurrence of q in Pj corresponds
to exactly one occurrence of q in L. Pj can be represented as

Pj = Pj,0[q(f ~M) ~N ′/z]

since Pj ∈ SF . For

P ′
j = Pj,0[K[ ~M/~x, ~N ′/~y]/z],

we have Pj `ρ
T P ′

j. (1) is proved. By Lemma 5.14, P ′
j ∈ SF and thus (3) is

proved.
Let φ and ψ denote the sequential substitutions [P1/z1] . . . [Pj−1/zj−1] and

[Pj+1/zj+1] . . . [Pk/zk], respectively. Since zj occurs in z1, P1, . . . , Pj−1 exactly
once, we have

L0 = z1φ[Pj,0/zj]ψ

~N = ~N ′ψ,

where each element of zj+1, . . . , zk appears in either z1φ[Pj,0/zj] or ~N ′. There-
fore,

L′ = L0[K[ ~M/~x, ~N/~y]/z]

= z1φ[Pj,0/zj]ψ[K[ ~M/~x, ~N/~y]/z]

= z1φ[Pj,0/zj][K[ ~M/~x, ~N ′/~y]/z]ψ

= z1φ[P ′
j/zj]ψ.

(2) is proved.
(4) is clear by the linearity.
Case 2. If ρ is an ε-rule, similarly we can show the lemma.

Corollary 5.16. Let T = 〈Σ1,Σ2, Q, qs,∆〉 be a linear MTT. Suppose that
L ∈ SF is represented as

L = z1[P1/z1] . . . [Pk/zk]

where Pi ∈ SF , zi occurs in P1, . . . , Pi−1 exactly once, and zi does not occur
in Pi, . . . , Pk for each i ∈ {1, . . . , k}. If

L `ρ1

T · · · `ρl

T L′,

there is a partition 〈S1, . . . , Sk〉 of {1, . . . , l} such that



114 Chapter 5. Two-Dimensional ACGs

• Si = {ni,1, . . . , ni,mi
} with ni,j < ni,j+1,

• Pi `ρni,1
· · · `ρni,mi

P ′
i ,

• L′ = z1[P
′
1/z1] . . . [P

′
k/zk].

Transformation

Here we present a method of transforming a linear MTT T = 〈Σ1,Σ2, Q,∆, qs〉
into a 2D-ACG G T = 〈Σ0,Σ1,Σ2,L1,L2, s〉. The set of abstract atomic
types is defined as the set of states, A0 = Q and define L1(q) = o and
L2(q) = on → o for each q ∈ Q(1+n). For each rule ρ ∈ ∆, we put the
following lexical entries into G T :

For ρ = q(fx1 . . . xm)y1 . . . yn → K0[qk1xk1
~Kk1/z1] . . . [qkmxkm

~Kkm/zm],
where 〈k1, . . . , km〉 is a permutation of 〈1, . . . , m〉,

[[ρ]] ∈ C0,

τ0([[ρ]]) = q1 → · · · → qm → q,

L1([[ρ]]) = f,

L2([[ρ]]) = λx1 . . . xmy1 . . . yn.K0[xk1
~Kk1/z1] . . . [xkm

~Kkm/zm],

and for an ε-rule ρ = qx1y1 . . . yn → K0[q1x1
~K1/z1],

[[ρ]] ∈ C0,

τ0([[ρ]]) = q1 → q,

L1([[ρ]]) = λzo.z,

L2([[ρ]]) = λx1y1 . . . yn.K0[x1
~K1/z1].

Since T is linear, L2([[ρ]]) is indeed a well-typed linear λ-term.

Lemma 5.17. O(G T ) ⊆ R(T )

Proof. We show by induction on M that if M ∈ Λ(Σ0) is variable-free and
has an atomic type q ∈ Q(1+n), then

q|L1(M)|βN1 . . . Nn `∗
T |L2(M)N1 . . . Nn|β

for every Ni ∈ T(Σ2 ∪ Z ). This implies that for any M ∈ A(G T ), we have
qs|L1(M)|β `∗

T |L2(M)|β.
Let the head of M be [[ρ]]. We have two cases.
Case 1. Suppose that ρ ∈ ∆ is not an ε-rule,

ρ = q(fx1 . . . xm)y1 . . . yn → K0[qk1xk1
~Kk1/z1] . . . [qkmxkm

~Kkm/zm],
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where 〈k1, . . . , km〉 is a permutation of 〈1, . . . , m〉. By τ0([[ρ]]) = q1 → · · · →
qm → q, M has the form

M = [[ρ]]M1 . . .Mm

for some Mi with τ0(Mi) = qi and τ0(M) = q. Applying the induction
hypothesis to each Mi, we have

qi|L1(Mi)|β ~Ki `
∗
T |L2(Mi) ~Ki|β. (5.1)

Let ~x = x1 . . . xm, ~y = y1 . . . yn, ~N = N1 . . . Nn. By the definition,

L1([[ρ]]) = f

L2([[ρ]]) = λ~x~y.K0[xk1
~Kk1/z1] . . . [xkm

~Kkm/zm].

Since

L2(M) ~N = L2([[ρ]])L2(M1) . . .L2(Mm) ~N

= (λ~x~y.K0[xk1
~Kk1/z1] . . . [xkm

~Kkm/zm])L2(M1) . . .L2(Mm) ~N

�β K0[L2(Mk1) ~Kk1/z1] . . . [L2(Mkm) ~Kkm/zm][ ~N/~y],

we have

qL1(M)N1 . . . Nn = q(f|L1(M1)|β . . . |L1(Mm)|β) ~N

`ρ
T K0[qk1 |L1(Mk1)|β ~Kk1/z1] . . . [qkm |L1(Mkm)|β ~Kkm/zm][ ~N/~y]

`∗
T K0[|L2(Mk1) ~Kk1 |β/z1] . . . [|L2(Mkm) ~Kkm |β/zm][ ~N/~y]

(By (5.1))

=β L2(M)N1 . . . Nn.

Case 2. Suppose that ρ is an ε-rule of the form

qx1y1 . . . yn → K0[q1x1
~K1].

Then, τ0([[ρ]]) = q1 → q, M = [[ρ]]M1 for some M1 with τ0(M1) = q1, and
τ0(M) = q. Applying the induction hypothesis to M1, we have

q1|L1(M1)|β ~K1 `
∗
T |L2(M1) ~K1|β.

By the definition,

L1([[ρ]]) = λzo.z

L2([[ρ]]) = λx1y1 . . . yn.K0[x1
~K1/z1].
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Let ~y = y1 . . . yn and ~N = N1 . . . , Nn. Since

L2(M) ~N = L2([[ρ]])L2(M1) ~N

= (λx1~y.K0[x1
~K1/z1])L2(M1) ~N

�β K0[L2(M1) ~K1/z1][ ~N/~y],

we have

qL1(M) ~N �β q|L1(M1)|β ~N

`ρ
T K0[q1|L1(M1)|β ~K1/z1][ ~N/~y]

`∗
T K0[|L2(M1) ~K1|β/z1][ ~N/~y]

=β L2(M) ~N .

Lemma 5.18. R(T ) ⊆ O(G T ).

Proof. We show by induction on k that if

qMN1 . . . Nn `ρ0

T P1 `
ρ1

T · · · `ρk

T Pk

where q ∈ Q(1+n), M ∈ T(Σ1) and N1, . . . , Nn, Pk ∈ T(Σ2 ∪Z ), then there is
L ∈ Λ(Σ0) of type q such that |L1(L)|β ≡M and |L2(L)N1 . . . Nn|β ≡ Pk.

Case 1. Suppose that ρ0 is not an ε-rule. Then, M , ρ0, P1 can be written
as

M = fM1 . . .Mm

ρ0 = q(fx1 . . . xm)y1 . . . yn → K0[qk1xk1
~Kk1/z1] . . . [qkmxkm

~Kkm/zm]

P1 = K0[qk1Mk1
~Kk1/z1] . . . [qkmMkm

~Kkm/zm][ ~N/~y]

where ~N = N1 . . . Nn, ~y = y1 . . . yn, and 〈k1, . . . , km〉 is a permutation of
〈1, . . . , m〉. By Lemma 5.16, we have a partition 〈S1, . . . , Sm〉 of {1, . . . , k}
such that

• Si = {ni,1, . . . , ni,li} with ni,j < ni,j+1,

• qiMi
~Ki[ ~N/~y] `

ρni,1

T · · · `
ρni,li

T Ri,

• Pk = K0[Rk1/z1] . . . [Rkm/zm].

By the induction hypothesis, there is Li ∈ Λ(Σ0) of type qi such that
L1(Li) = Mi and

L2(Li) ~Ki[ ~N/~y] = Ri. (5.2)
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For L = [[ρ0]]L1 . . . Lm, we see that

L1(L) = L1([[ρ0]])L1(L1) . . .L1(Lm) = fM1 . . .Mm = M ,

and

L2(L)N1 . . . Nn

= L2([[ρ0]])L2(L1) . . .L2(Lm) ~N

= (λx1 . . . xm~y.K0[xk1
~Kk1/z1] . . . [xkm

~Kkm/zm])L2(L1) . . .L2(Lm) ~N

= K0[L2(Lk1)
~Kk1[

~N/~y]/z1] . . . [L2(Lkm) ~Kkm[ ~N/~y]/zm]

= K0[Rk1/z1] . . . [Rkm/zm] (by (5.2))

= Pk.

Case 2. Suppose that ρ0 is an ε-rule. Then, ρ0 and P1 can be written as

ρ0 = qx1y1 . . . yn → K0[q1x1
~K1/z1]

P1 = K0[q1M ~K1/z1][ ~N/~y]

where ~N = N1 . . . Nn and ~y = y1 . . . yn. There is R1 ∈ T(Σ2 ∪ Z ) such that

• q1M ~K1[ ~N/~y] `
ρ1

T · · · `ρk

T R1,

• Pk = K0[R1/z1].

By the induction hypothesis, there is L1 ∈ Λ(Σ0) of type q1 such that
L1(L1) = M and

|L2(L1) ~K1[ ~N/~y]|β = R1.

For L = [[ρ0]]L1, we see that

L1(L) = L1([[ρ0]])L1(L1) = (λzo.z)M = M ,

and

L2(L)N1 . . . Nn

= L2([[ρ0]])L2(L1)N1 . . . Nn

= (λx1y1 . . . yn.K0[x1
~K1/z1])L2(L1)N1 . . . Nn

= K0[L2(L1) ~K1[ ~N/~y]/z1]

= K0[R1/z1]

= Pk.
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Corollary 5.19. Every linear ε-free macro tree transducer has an equivalent
2D-ACG belonging to Gtree,tree(2, 1(r), 2). Every linear macro tree transduc-
ers has an equivalent 2D-ACGs belonging to Gtree,tree(2, 1(sr), 2).

It is not difficult to establish the converse direction. We define a linear
MTT T G = 〈Σ1,Σ2, Q, qs,∆〉 equivalent to a given 2D-ACG G = 〈Σ0,Σ1,Σ2,
L1,L2, s〉 ∈ Gtree,tree(2, 1(sr), 2). Let

Q(1+n) = { q ∈ A0 | L2(q) = on → o }

and qs = s. For each a ∈ C0 of type q1 → · · · → qm → q, if L2(q) is n-ary,
then put the transition rule

q(|L1(a)x1 . . . xm|β)y1 . . . yn → |L2(a)(q1x1) . . . (qmxm)y1 . . . yn|β

into ∆. It is easy to check that the above method is exactly the inverse of
our encoding of linear MTTs by ACGs. Thus the resultant linear MTT T G

is equivalent to the given 2D-ACG G . This shows the following statement.

Theorem 5.20. Every linear ε-free macro tree transducer has an equivalent
2D-ACG belonging to Gtree,tree(2, 1(r), 2) and vice versa. Every linear macro
tree transducers has an equivalent 2D-ACGs belonging to Gtree,tree(2, 1(sr), 2)
and vice versa.

Synchronous Tree Adjoining Grammars and 2D-ACGs

The notion of tree bimorphisms can be extended by replacing each homo-
morphism with general mappings, as lexicons are allowed to be higher-order.
Shieber [52] has shown that the relation defined by synchronous tree adjoin-
ing grammars (STAGs), which are an extension of STSGs, can be represented
by tree bimappings B = 〈L,Φ,Ψ〉 where L is a regular tree language and
both mappings Φ and Ψ are defined by linear monadic ε-free MTTs. In a
monadic MTT, Q = Q(1) ∪ Q(2) holds. Actually what Theorem 5.20 states
is that linear MTTs can be represented by 2D-ACGs, not by lexicons. Nev-
ertheless, the following Lemma entails that STAGs are also encodable by
2D-ACGs.

Lemma 5.21. Let two 2D-ACGs G = 〈Σ0,Σ1,Σ2,L1,L2, s〉 ∈ G(2, 1(r), n)
and G ′ = 〈Σ′

0,Σ1,Σ
′
2,L

′
1,L

′
2, s

′〉 ∈ G(2, 1(r), n′) are given. There is a 2D-
ACG G ′′ ∈ G(2, n, n′) such that

O(G ′′) = { 〈P,Q〉 | 〈M,P 〉 ∈ O(G ) and 〈M,Q〉 ∈ O(G ′) }.
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Σ′′
0

Σ0 Σ′
0

Σ2 Σ1 Σ′
2

L2 L1 L ′
1 L ′

2

Φ Ψ

Figure 5.2: Bimapping and ACG (Lemma 5.21)

Proof. Let Σ′′
0, L ′′

1 : Σ′′
0 → Σ1, L : Σ′′

0 → Σ2, L ′ : Σ′′
0 → Σ′

2 be defined as

A
′′
0 = { [p, q] | p ∈ A0, q ∈ A

′
0 , L1(p) = L

′
1(q) },

C
′′
0 = { [[a, b]] | a ∈ C0, b ∈ C

′
0, L1(a) = L

′
1(b) },

τ ′′0 ([[a, b]]) = [p1, q1] → · · · → [pk, qk] → [p0, q0]

if τ0(a) = p1 → · · · → pk → p0, τ0(b) = q1 → · · · → qk → q0,

L ([p, q]) = L2(p), L
′([p, q]) = L

′
2(q),

L ([[a, b]]) = L2(a), L
′([[a, b]]) = L

′
2(b).

For G ′′ = 〈Σ′′
0,Σ2,Σ

′
2,L ,L ′, [s, s′]〉, we have

O(G ′′) = { 〈P,Q〉 | 〈M,P 〉 ∈ O(G ) and 〈M,Q〉 ∈ O(G ′) }.

Corollary 5.22. Synchronous tree adjoining grammars can be represented
by 2D-ACGs belonging to Gtree,tree(2, 2(mon), 2(mon)).

Proof. For a given STAG G, let BG = 〈L, T1, T2〉 be the corresponding
bimapping where T1 and T2 are linear monadic ε-free MTTs. By our con-
struction, we have G Ti ∈ Gtree,tree(2, 1(r), 2(mon)) such that

O(G Ti) = { 〈M,N〉 |M `Ti
N }

By applying Lemma 5.21 to G T1 and G T2 , we get G ∈ Gtree,tree(2, 2(mon), 2(mon))
such that

O(G ) = { 〈N1, N2〉 |M `T1 N1, M `T2 N2 } = R(BG).

Remark 5.23. Though STAGs generate PTIME languages by Corollar-
ies 5.10 and 5.22, the universal membership problem for STAGs is NP-
Complete. The membership of NP is obvious. The NP-hardness can be
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shown by reduction from the string rearrangement problem (see Definition 6.4
and Theorem 6.5). For the definition of STAGs and their derivations, see [50].

For an instance 〈w, 〈w1, . . . ,wn〉〉 of the string rearrangement problem, let
an STAG consists of the following initial tree pair and auxiliary tree pairs:

•

〈

A1

A2

...

An

#

B

# #,

〉

•

〈 Ai

A∗
i

B

ai,1 B

ai,2 . . .

B

ai,mi
B∗

,

〉
for wi = ai,1 . . . ai,mi

.

It is clear that 〈w1, . . . ,wn〉 has a solution iff the following tree pair is deriv-
able by the above STAG. The order of adjoining trees corresponds to the
permutation on 〈w1, . . . ,wn〉.

•

〈

A1

A1

...

An

An

#

B

a1 B

a2 . . .

B

am B

# #

,

〉
for w = a1 . . . am.

This result makes a contrast to the fact that the universal membership prob-
lem for TAGs is in P.

5.5 Deterministic Tree Walking Transducers

A deterministic tree walking transducer [1] (DTWT) is a kind of finite state
automaton that takes a tree as input and walks on the tree from a node to
a node starting from the root node. Depending on the current state and the
label on the current node, it deterministically decides which adjacent node it
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should go to and which state it should enter. Each transition, it writes some
string. When it gets out of the tree with a final state, the concatenation of
the written strings is output. Thus, a DTWT defines a relation between trees
and strings. A DTWT becomes a tree recognizer or string generator if we
disregard its output or input, respectively. It is known that DTWTs as tree
recognizers define a proper subclass of the regular tree languages [23] and that
DTWTs as string generators are equivalent to LCFRSs [57]. Consequently
it would be expected that the relation defined by DTWTs are definable by
2D-ACG belonging to Gtree,string(2, 1, 4), though it is not a corollary to the
above results. In this section, we show that the expectation is correct by
borrowing the idea from Weir’s work [57].

Definitions and Notations

For each tree M , we give the set path(M) ⊆ N∗ of paths of M as

path(fM1 . . .Mn) = {ε} ∪ { iπ | π ∈ path(Mi) }

and the subtree specified by π ∈ N∗ is defined as

fM1 . . .Mn : π =

{
fM1 . . .Mn if π = ε

Mi : π′ if π = iπ′.

A deterministic tree walking transducer is a sextuple T = 〈Σ1, V, Q,∆, qs, F 〉
where

• Σ1 is a ranked alphabet, called the input alphabet,

• V is an unranked alphabet, called the output alphabet,

• Q is the set of states,

• qs ∈ Q is the initial state,

• Qf ⊆ Q is the set of final states,

• ∆ is a partial function from Σ1 × Q to V ∗ × N × Q, called the set of
transition rules, such that if ∆(A, q) = 〈w, d, q′〉, then 0 ≤ d ≤ rank(A).

A configuration of T is a quadruple 〈K, π, q,w〉 where K ∈ T(Σ1) is the tree
under consideration, π ∈ path(K) ∪ {↑} specifies a node in K or is ↑ (where
↑ can be thought of as the parent of the root of K), q ∈ Q is the current
state, and w ∈ V ∗ is the output string produced up to that point in the
computation. We call a state q an up-state for A if ∆(A, q) = 〈v, 0, q ′〉 for
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some q′ and v and a down-state for A if ∆(A, q) = 〈v, d, q′〉 for some d > 0.
We write

〈K, π, q,w〉 `T 〈K, π′, q′,ww′〉

if

• the head of K : π is A ∈ Σ1,

• ∆(A, q) = 〈w′, d, q′〉,

• either π = π′m for some m or π = ε ∧ π′ =↑ when d = 0,

• π′ = πd when d > 0.

The relation defined by T is

R(T ) = { 〈K,w〉 | K ∈ T(Σ1) and 〈K, ε, qs, ε〉 `
∗
T 〈K, ↑, q,w〉 for some q ∈ F }.

If K is in the domain of R(T ), we say that K is accepted.

Example 5.24. Let a DTWT T = 〈Σ1, V, Q,∆, q0, {qf}〉 have the following
transition rules in ∆:

〈B, q0〉
ε
→ 〈1, q0〉, 〈A, q0〉

a
→ 〈1, q0〉, 〈C, q0〉

ε
→ 〈0, q1〉, 〈A, q1〉

ε
→ 〈0, q1〉,

〈B, q1〉
ε
→ 〈1, q2〉, 〈A, q2〉

ε
→ 〈2, q2〉, 〈B, q2〉

ε
→ 〈1, q2〉, 〈D, q2〉

ε
→ 〈0, q3〉,

〈B, q3〉
b
→ 〈0, q3〉, 〈A, q3〉

c
→ 〈1, q2〉, 〈C, q2〉

ε
→ 〈0, q4〉, 〈A, q4〉

d
→ 〈0, q4〉,

〈B, q4〉
ε
→ 〈0, qf〉

T translates the following tree into the string aaabbcbcbcddd.

B

A

A

A

C B

D

B

D

B

B

D

T
=⇒ aaabbcbcbcddd

Encoding of DTWTs by 2D-ACGs

First we construct a 1D-ACG G1 = 〈Σ0,Σ1,L1, s〉 whose language is the
domain of the relation defined by a given DTWT, disregarding the output
strings. Suppose that a tree K is accepted by T . We can decorate each node
of K with the sequence of states of T which T enters when T visits that
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[B,q0q1q4]

[A,q0q1q2q3q4]

[A,q0q1q2q3q4]

[A,q0q1q2q3q4]

[C,q0q2] [B,q2q3]

[D,q2]

[B,q2q3]

[D,q2]

[B,q2q3]

[B,q2q3]

[D,q2]

Figure 5.3: Tree decorated with valid histories

node. The tree in Example 5.24 is decorated as in Figure 5.3 according to
the walking of T . We can give any decoration on a tree, but at most one
of them represents the real walking of the automaton on the tree, since the
automaton is deterministic. We call such a decoration correct. A tree admits
exactly one correct decoration if the tree is accepted, and otherwise, it has
no correct decoration. Though checking the correctness of a decoration on
a tree can be done by walking the whole tree, here we present a method of
checking the correctness of a decoration locally.

If a node labeled with A in a tree K ∈ T(Σ1) is decorated with a sequence
~p of states, then ~p must end with an up-state p for A, since T terminates at
the upper node ↑ of the root node. Moreover, by the determinacy of T , ~p
contains no overlapped occurrences of the same state. If a state p appears in
~p twice or more, then T falls into a loop. We call a possibly empty sequence
~p of states a valid history of A if

• for every element p of ~p, ∆(A, p) is defined,

• no state occurs twice or more in the sequences,

• the last element (if exists) of ~p is an up-state.

In particular, if A has rank 0, then every valid history ~p on A consists of
up-states only. There are finitely many valid histories of A for each A, since
any state can appear in a valid history at most once.

Let us look at the following fragment of the decorated tree in Figure 5.3.

[A,q0q1q2q3q4]

[C,q0q2] [B,q2q3]
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Now you can forget other parts of the tree. Here q0q1q2q3q4, q0q2, q2q3 are
respectively valid histories of A, C, B. Since the automaton starts from the
root node, the automaton visits the parent node A before its children C,
B. Let us analyze the relation between those three valid histories starting
from the state q0 on the node A. According to the transition rule 〈A, q0〉

a
→

〈1, q0〉 ∈ ∆, the automaton must go down to the first child C and the state
q0 is unchanged. Indeed, the first state of the decoration on the node C

is q0. It is consistent. Then the transition rule 〈C, q0〉
ε
→ 〈0, q1〉 demands

the automaton to go up to the parent A and to change the state into q1.
Indeed, the second state on A is q1. Here the automaton should obey the
rule 〈A, q1〉

ε
→ 〈0, q1〉, and it disappears from our view. Though we cannot

know whether the automaton comes back here unless we look at other parts of
the tree, we assume that it comes back here with the third state q2 on A, and
continue checking the consistency as described so far. By 〈A, q2〉

ε
→ 〈2, q2〉,

the automaton arrives at B with the state q2. Then it next goes down by the
rule 〈B, q2〉

ε
→ 〈1, q2〉. Again we assume the automaton comes back here with

the next state q3 on B, though we do not known whether the automaton really
comes back here with that state. This consistency checking is illustrated by
arrows as below, where all the states appearing in the valid histories are
connected in sequence. This case we say it is a locally consistent combination
of valid histories.

[A, q0 q1 q2 q3 q4]

[C, q0 q2] [B, q2 q3]

The following two are examples of inconsistent combinations of valid histo-
ries.

[A, q0 q1 q2 q3 q4]

[C, q2 q0] [B, q2 q3]

[A, q0 q1]

[C, q0 q2 ] [B, ε]
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In the example on the left, though the sequence q2q0 is a valid history of
C, it contradicts the transition rule 〈A, q0〉

a
→ 〈1, q0〉. In the example on the

right, we cannot reach the last state q2 on the node C. These are inconsistent
combinations of valid histories. For A ∈ Σ

(0)
1 , which cannot have children,

we also define a locally consistent combination of valid histories to be a valid
history of A.

Let us turn our attention to the root node. It is easy to see that if the
root node of an accepted tree is decorated as [A, q1 . . . qk], then

• the first element q1 must be the initial state,

• if i 6= k, then qi is a down state of A,

• 〈A, qk〉
v
→ 〈0, qf〉 ∈ ∆ for some qf ∈ Qf .

We call a valid history ~q on A satisfying those conditions a root history of A.
As we will prove later, for a given decorated input tree, if each fragment of
the tree of height one is decorated by consistent history and the root node is
labeled with a root history, then the whole decoration on the tree is correct,
and thus the undecorated tree is accepted by the automaton. For a given
DTWT T , we construct a 2D-ACG whose abstract language represents the
set of correctly decorated trees on Σ1 and whose first lexicon strips off the
decoration of the tree.

Definition 5.25. For A ∈ Σ
(n)
1 and B1, . . . ,Bn ∈ Σ1, a locally consistent

combination of valid histories of 〈A,B1, . . . ,Bn〉 is a sequence σ of pairs whose
first component is a symbol in {A,B1, . . . ,Bn} and whose second component
is a state in Q such that

σ = σ1 . . . σk

σi = σi,1 . . . σi,ki
〈A, pi,ki+1〉

σi,j = 〈A, pi,j〉〈Bdi,j
, qi,j,1〉 . . . 〈Bdi,j

, qi,j,ki,j+1〉

where

• the sequence ~p = p1,1 . . . p1,k1+1 . . . pk,1 . . . pk,kk+1 is a valid history of A

for each 1 ≤ i ≤ k,

• ~qh = 〈 qi,j,g | di,j = h, 1 ≤ g ≤ ki,j +1 〉2 (elements of ~qh are paired with
Bh) is a valid history of Bh

2 Precisely, ~qh is the sequence consisting of qi,j,g with di,j = h such that if ~qh =
~r1qi1,j1,g1

qi2,j2,g2
~r2, then either i1 < i2 or i1 = i2 ∧ j1 < j2 or i1 = i2 ∧ j1 = j2 ∧ g1 < g2

holds. In the remainder of this section, if a sequence is defined without specifying the
order of the elements, they are ordered in this manner according to their indexes.
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and moreover, for each 1 ≤ i ≤ k, 1 ≤ j ≤ ki, 1 ≤ g ≤ ki,j,

• ∆(A, pi,ki+1) = 〈v, 0, r〉 for some v ∈ V ∗ and r ∈ Q,

• ∆(A, pi,j) = 〈vi,j, di,j, qi,j,1〉 with 1 ≤ di,j ≤ n and vi,j ∈ V ∗,

• ∆(Bdi,j
, qi,j,g) = 〈v, d, r〉 for some v ∈ V ∗, d > 0, and r ∈ Q,

• ∆(Bdi,j
, qi,j,ki,j+1) = 〈v′i,j, 0, pi,j+1〉 with v′i,j ∈ V ∗.

Now we define a higher-order signature Σ0 and a lexicon L1 : Σ0 → Σ1.
Let

A0 = { [A, ~p] | ~p is a valid history of A } ∪ {s}

C0 = { [[AB1 . . .Bn, σ]] | σ is a locally consistent combination of valid

histories of AB1 . . .Bn }

∪ { [[A, ~q]] | ~q is a root history of A }

and τ0 be defined as

τ0([[AB1 . . .Bn, σ]]) = [B1, ~q1] → · · · → [Bn, ~qn] → [A, ~p]

where each ~qi and ~p are determined as in Definition 5.25,

τ0([[A, ~q]]) = [A, ~q] → s.

Let

L1([A, ~q]) = o,

L1([[A~B, σ]]) = A,

L1([[A, ~q]]) = λzo.z,

We have established the correspondence between correctly decorated trees
on T(Σ1) and the abstract language of G1 = 〈Σ0,Σ1,L1, s〉.

Now, let turn our attention to the output of the transducer. We say that
a valid history ~q on A is a unitary history iff ~q contains exactly one up-state
for A. If a valid history ~q contains k up-states, then ~q is uniquely partitioned
into k unitary histories. Suppose that a subtree K of a correctly decorated
tree is rooted by [A, ~q] such that ~q is partitioned into k unitary histories.
This means that the automaton visits the subtree K exactly k times. The
automaton outputs some string wi during the walking of the i-th visit. Let
M ∈ Λ(Σ0) represent K. We want the second lexicon L2 : Σ0 → ΣV to map
M to

λxstrk→str .x/w1/ . . . /wk/.
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This can be realized by defining L2 as follows.

L2(s) = str ,

L2([A, ~p]) = (strk → str) → str

if ~p is partitioned into k unitary histories of A.

Let A,B1, . . . ,Bn, and σ be as in Definition 5.25.

L2([[AB1 . . .Bn, σ]]) = λy1 . . . ynx.y1(λ~z1.y2(λ~z2. . . . yn(λ~zn.xN1 . . . Nk) . . . ))

where ~zh = 〈 zi,j | di,j = h 〉 and

Ni = /vi,1/+ zi,1 + /v′i,1/+ · · · + /vi,ki
/+ zi,ki

+ /v′i,ki
/.

For root histories, let

L2([[A, ~q]]) = λy(str→str)→str .y(λzstr .z + /v/)

if ∆(A, q) = 〈v, 0, qf〉 for some qf ∈ Qf for the last element q of ~q.
We then define an ACG G T ∈ Gtree,string(2, 1(sr), 4) as

G
T = 〈Σ0,Σ1,ΣV ,L1,L2, s〉.

Lemma 5.26. O(G T ) = R(T ).

Proof. [O(G T ) ⊆ R(T )]
First we show the following claim by induction on M :

Suppose that M ∈ T(Σ0) has type [A, ~p] ∈ A0 − {s}. Let ~p be
partitioned into k unitary histories ~p1, . . . , ~pk of A. Then, there
are w1, . . . ,wk ∈ V ∗ such that

• L2(M) = λxstrk→str .x/w1/ . . . /wk/,

• 〈L1(M), ε, pi,1, ε〉 `
∗
T 〈L1(M), ε, pi,ki+1,wi〉 where ~pi = pi,1 . . . pi,ki+1.

Basis. Suppose that M = [[A, 〈A, p1〉 . . . 〈A, pk〉]] ∈ C0 with A ∈ Σ
(0)
1 . Every

pi is an up-state and thus a unitary history of A. By the definition,

• L2([[A, 〈A, p1〉 . . . 〈A, pk〉]]) = λxstrk→str .x

k times︷ ︸︸ ︷
/ε/ . . . /ε/,

• 〈A, ε, pi, ε〉 `
0
T 〈A, ε, pi, ε〉.
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Step. Suppose that M is of the form [[AB1 . . .Bn, σ]]M1 . . .Mn and

τ0([[AB1 . . .Bn, σ]]) = [B1, ~q1] → · · · → [Bn, ~qn] → [A, ~p].

σ must be of the form

σ = σ1 . . . σk

σi = σi,1 . . . σi,ki
〈A, pi,ki+1〉

σi,j = 〈A, pi,j〉〈Bdi,j
, qi,j,1〉 . . . 〈Bdi,j

, qi,j,ki,j+1〉

such that

• the sequence ~p = p1,1 . . . p1,k1+1 . . . pk,1 . . . pk,kk+1 is a valid history of A,
where each pi,1 . . . pi,ki+1 is a unitary history of A,

• ~qh = 〈 qi,j,g | di,j = h, 1 ≤ g ≤ ki,j + 1 〉 is a valid history of Bh, where
each qi,j,1 . . . qi,j,ki,j+1 is a unitary history of Bh,

and moreover, for each 1 ≤ i ≤ k and 1 ≤ j ≤ ki,

∆(A, pi,j) = 〈vi,j, di,j, qi,j,1〉 with 1 ≤ di,j ≤ n, (5.3)

∆(Bdi,j
, qi,j,ki,j+1) = 〈v′i,j, 0, pi,j+1〉. (5.4)

We apply the induction hypothesis to Mh of type [Bh, ~qh] for each 1 ≤ h ≤ n.
If ~qh is partitioned into lh unitary histories of Bh, then there are strings
uh,1, . . . , uh,lh ∈ V ∗ such that

L2(Mh) = λxstr lh→str .x/uh,1/ . . . /uh,lh/, (5.5)

and for each i, j with di,j = h,

〈L1(Mh), ε, qi,j,1, ε〉 `
∗
T 〈L1(Mh), ε, qi,j,ki,j+1,wi,j〉 (5.6)

where wi,j = uh,g for the g-th pair 〈i, j〉 such that di,j = h, i.e., 〈uh,1, . . . , uh,lh〉 =
〈wi,j | di,j = h 〉. Thus, for each j ≤ ki we get

〈L1(M), ε, pi,j, ε〉 `T 〈L1(M), di,j, qi,j,1, vi,j〉 (by (5.3))

`∗
T 〈L1(M), di,j, qi,j,ki,j+1, vi,jwi,j〉 (by (5.6))

`T 〈L1(M), ε, pi,j+1, vi,jwi,jv
′
i,j〉, (by (5.4))

and therefore

〈L1(M), ε, pi,1, ε〉 `
∗
T 〈L1(M), ε, pi,ki+1,wi〉
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for wi = vi,1wi,1v
′
i,1 . . . vi,ki

wi,ki
v′i,ki

. On the other hand, by the definition of
L2,

L2([[AB1 . . .Bn, σ]]) = λy1 . . . ynx.y1(λ~z1.y2(λ~z2. . . . yn(λ~zn.xN1 . . . Nk) . . . ))

where ~zh = 〈 zi,j | di,j = h 〉 and

Ni = /vi,1/+ zi,1 + /v′i,1/+ · · · + /vi,ki
/+ zi,ki

+ /v′i,ki
/.

Let /~uh/ = 〈/uh,1/, . . . , /uh,lh/〉 = 〈 /wi,j/ | di,j = h 〉. Then,

L2(M) = L2([[AB1 . . .Bn, σ]])(λxstr l1→str .x/~u1/) . . . (λx
str ln→str .x/ ~un/)

(by (5.5))

= λx.xN1 . . . Nk[/~u1//~z1] . . . [/~un//~zn]

= λx.xN1 . . . Nk[/wi,j//zi,j]
1≤j≤ki

1≤i≤k

= λx.x/w1/ . . . /wn/.

We have completed the proof of the claim.
Suppose that M ∈ A(G T ). Then, M has the form M = [[A, ~q]]M ′ for some

M ′ of type [A, ~q], where ~q is a root history of A of the form ~q = qsq2 . . . qk+1

such that

∆(A, qk+1) = 〈v, 0, q〉

for some q ∈ Qf and v ∈ V ∗. By applying the above claim to M ′, we get

• L2(M
′) = λxstr→str .x/w/,

• 〈L1(M
′), ε, qs, ε〉 `

∗
T 〈L1(M

′), ε, qk+1,w〉.

Combining the above derivation with respect to L1(M
′) and ∆(A, qk+1) =

〈v, 0, q〉, we get

〈L1(M
′), ε, qs, ε〉 `

∗
T 〈L1(M

′), ↑, q,wv〉,

and thus we have 〈L1(M
′),wv〉 ∈ R(T ). Since L1([[A, ~q]]) = λx.x and

L2([[A, ~q]]) = λy.y(λz.z + /v/), we get

L1([[A, ~q]]M
′) = L1(M

′)

L2([[A, ~q]]M
′) = /wv/.

We obtain O(G T ) ⊆ R(T ).
[R(T ) ⊆ O(G T )]
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Let K ′ be a subtree of the correctly decorated tree of an accepted tree,
[A, ~p] the label of the root of K ′, ~p = ~p1 . . . ~pk, and ~pi = pi,1 . . . pi,ki+1 where
each ~pi is a unitary history of A. Then, for each 1 ≤ i ≤ k we have

〈K, ε, pi,1, ε〉 `
∗
T 〈K, ε, pi,ki+1,wi〉

where K ∈ Λ(Σ1) is the tree obtained from K ′ by stripping off the decoration
with states. We first prove that for such K, ~p, and w1, . . . ,wk, there is
M ∈ Λ(Σ0) such that

• τ0(M) = [A, ~p],

• L1(M) = K,

• L2(M) = λxstrk→str .x/w1/ . . . /wk/

by induction on K.
Basis. If K = A ∈ Σ

(0)
1 and K ′ = [A, ~p] where ~p = p1 . . . pk is a valid

history of A, then we have

〈K, ε, pi, ε〉 `
0
T 〈K, ε, pi, ε〉

for 1 ≤ i ≤ k. By the definition, we have an abstract constant

[[A, 〈A, p1〉 . . . 〈A, pk〉]] ∈ C0 such that

τ0([[A, 〈A, p1〉 . . . 〈A, pk〉]]) = [A, ~p],

L1([[A, 〈A, p1〉 . . . 〈A, pk〉]]) = A = K,

L2([[A, 〈A, p1〉 . . . 〈A, pk〉]]) = λxstrk→str .x /ε/ . . . /ε/︸ ︷︷ ︸
k times

.

Step. Suppose that a tree K ∈ T(Σ1) and a sequence ~p of states are such

that K = A(B1
~K1) . . . (Bn

~Kn), ~p = p1,1 . . . p1,k1+1 . . . pk,1 . . . pk,kk+1 where
each pi,1 . . . pi,ki+1 is a unitary history of A, and

〈K, ε, pi,1, ε〉 `
∗
T 〈K, ε, pi,ki+1,wi〉 (5.7)

for each 1 ≤ i ≤ k.
For each j ≤ ki, since pi,j is a down-state for A, we have ∆(A, pi,j) =

〈vi,j, di,j, ri,j〉 for some vi,j ∈ V ∗, di,j > 0, ri,j ∈ Q, and T goes down to the
di,j-th child of A.

〈K, ε, pi,j, ε〉 `T 〈K, di,j, ri,j, vi,j〉 (5.8)

Since T must come back from Bdi,j
to the node A with the state pi,j+1, there

are r′i,j ∈ Q and v′i,j ∈ V ∗ such that ∆(Bdi,j
, r′i,j) = 〈v′i,j, 0, pi,j+1〉, i.e.,

〈K, di,j, r
′
i,j, ε〉 `T 〈K, ε, pi,j+1, v

′
i,j〉 (5.9)
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Consider the move of T from when it is at Bdi,j
with the state ri,j to when it

is at Bdi,j
with the state r′i,j. That is,

〈K, di,j, ri,j, ε〉 `
∗
T 〈K, di,j, r

′
i,j,wi,j〉 (5.10)

for some wi,j ∈ V ∗. By (5.7)–(5.10), we get the equation

wi = vi,1wi,1v
′
i,1 . . . vi,ki

wi,ki
v′i,ki

. (5.11)

Suppose that the h-th child of A is decorated as [Bh, ~qh] in K ′. ~qdi,j

must contain as a subsequence a unitary history of Bdi,j
corresponding to

(5.10). Let the unitary history be ~qi,j = qi,j,1 . . . qi,j,ki,j+1, where qi,j,1 = ri,j,
qi,j,ki,j+1 = r′i,j. We see ~qh = 〈 qi,j,g | di,j = h, 1 ≤ g ≤ ki,j + 1 〉. By applying

the induction hypothesis to Bh
~Kh and ~qh, we get Mh ∈ Λ(Σ0) such that

τ0(Mh) = [Bh, ~qh],

L1(Mh) = Bh
~Kh,

L2(Mh) = λx.x〈/wi,j/〉di,j=h. (5.12)

Let σ be defined as

σ = σ1 . . . σk

σi = σi,1 . . . σi,ki
〈A, pi,ki+1〉

σi,j = 〈A, pi,j〉〈Bdi,j
, qi,j,1〉 . . . 〈Bdi,j

, qi,j,ki,j+1〉.

Since σ is a locally consistent combination of valid histories of 〈A,B1, . . . ,Bn〉,
we have an abstract constant [[AB1 . . .Bn, σ]] such that

τ0([[AB1 . . .Bn, σ]]) = [B1, ~q1] → · · · → [Bn, ~qn] → [A, ~p]

L1([[AB1 . . .Bn, σ]]) = A

L2([[AB1 . . .Bn, σ]]) = λy1 . . . ynx.y1(λ~z1. . . . yn(λ~zn.xN1 . . . Nk) . . . )

where Ni = /vi,1/+ zi,1 + /v′i,1/+ · · ·+ /vi,ki
/+ zi,ki

+ /v′i,ki
/

and ~zh = 〈 zi,j | di,j = h 〉.

Thus, for the abstract term M = [[AB1 . . .Bn, σ]]M1 . . .Mn ∈ Λ(Σ0), we have

τ0(M) = [A, ~p]

L1(M) = A(B1
~K1) . . . (Bn

~Kn)

L2(M) = λx.L2(M1)(λ~z1. . . .L2(Mn)(λ~zn.xN1 . . . Nk) . . . )

= λx.xN1 . . . Nk[/wi,j//zi,j]
1≤i≤k
1≤j≤ki

(by (5.12))

= λx.x/w1/ . . . /wk/. (by (5.11))
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Suppose that 〈K,w〉 ∈ R(T ) for some tree K ∈ T(Σ1) and w ∈ V ∗. Let
~q = qsq2 . . . qk+1 be the root history of the root label A of K obtained from
the derivation

〈K, ε, qs, ε〉 `
∗
T 〈K, ε, qk+1,w

′〉 `T 〈K, ↑, q,w′v〉

where q ∈ Qf and w = w′v. By applying the above claim to the derivation

〈K, ε, qs, ε〉 `
∗
T 〈K, ε, qk+1,w

′〉,

we get a λ-term M such that

• τ0(M) = [A, ~q],

• L1(M) = K,

• L2(M) = λx.x/w′/.

Recall that we have the abstract constant [[A, ~q]] such that

• τ0([[A, ~q]]) = [A, ~q] → s,

• L1([[A, ~q]]) = λx.x,

• L2([[A, ~q]]) = λy.y(λz.z + /v/).

Thus, for [[A, ~q]]M ∈ A(G T ), we get L1([[A, ~q]]M) = K and L2([[A, ~q]]M) =
/w′v/ = /w/. This completes the proof.

Proposition 5.27. For every deterministic tree walking transducer T , there
is a 2D-ACG G T ∈ Gtree,string(2, 1(r), 4) such that O(G T ) = R(T ).

Proof. The lexicon L1 defined above is a semi-relabeling. Abstract constants
representing root histories are mapped to the identity: L1([[A, ~q]]) = λxo.x.
These constants can be eliminated as we have done in Section 4.3.3 to elimi-
nate unary nonlexical constants from second-order ACGs. For each constant
[[A~B, σ]] of type ~α → [A, ~q], we add a new constant of type ~α → s that is

mapped to Li(λ~x.[[A, ~q]]([[A~B, σ]]~x)) by the lexicon Li. Then we can get rid
of [[A, ~q]] from the grammar.

Remark 5.28. In the original definition [1], a DTWT has a context-free
grammar as its parameter and takes only derivation trees of the CFG as
input. The above proposition still holds if input is restricted to elements of
a regular tree language L. Let G L = 〈Σ0,Σ1,L , s〉 ∈ Gtree(2, 1(r)) represent
the regular tree language L and G T ∈ Gtree,string(2, 1(r), 4) encoding the tree
transducer whose input is not restricted. Applying Lemma 5.21 to the 2D-
ACGs G LL = 〈Σ0,Σ1,Σ1,L ,L , s〉 and G T ∈ Gtree,string(2, 1(r), 4), we obtain
the desired 2D-ACG.
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Now we obtain the two-dimensional version of Salvati’s Theorem (Theo-
rem 2.6). It is easy to extend the following result to second-order kD-ACGs
for any k ∈ N.

Corollary 5.29. For every second-order 2D-ACG G ∈ Gstring,string(2, n1, n2),
there is an equivalent 2D-ACG G ′ ∈ Gstring,string(2, 4, 4).

Proof. In the proof of Salvati’s Theorem, for a given second-order string
1D-ACG G0 ∈ Gstring(2, n), he constructs a DTWT T0 as a string language
generator whose output language coincides with the object language of G0,
where input trees for T0 are restricted to elements of A(G0).

3

Let G = 〈Σ0,Σ1,Σ2,L1,L2, s〉 ∈ Gstring(2, n1, n2). For the i-th pro-
jection Gi = 〈Σ0,Σi,Li, s〉 of G , let Ti = 〈Σ0,Σi, Qi, qi, F 〉 be the DTWT
obtained by Salvati’s method whose input is restricted to a regular tree lan-
guage A(G ). That is,

R(Ti) = { 〈M,Pi〉 |M ∈ A(G ), Pi = Li(M) }.

By applying our method to DTWTs Ti, we get 2D-ACGs G ′
i ∈ Gtree,string

(2, 1(r), 4) such that
O(Gi) = R(Ti).

By Lemma 5.21, we get a 2D-ACG G ′ ∈ G(2, 4, 4) such that

O(G ′) = { 〈P1, P2〉 | 〈M,Pi〉 ∈ O(G ′
i ) = R(Ti) }

= { 〈P1, P2〉 |M ∈ A(G ), Pi = Li(M) } = O(G ).

The converse of Proposition 5.27 does not hold, since there is a regular
tree language that cannot be recognized by any DTWT [23].

5.6 Linearization of Affine Two-Dimensional

ACGs

In Chapter 3, we gave two linearization methods for affine 1D-ACG (Theo-
rem 3.16). One of them is valid for 2D-ACGs as well.

Theorem 5.30. For every affine 2D-dimensional ACG G ∈ Gaff(m,n1, n2),
there is a linear 2D-dimensional ACG G ′′ ∈ Glin(m,max{2, n1},max{2, n2})
such that O(G ′′) = O(G ) ∩ (Λlin(Σ1) × Λlin(Σ2)).

3Precisely speaking, Salvati gives a slight modification on the given ACG G0 before
constructing a DTWT. Nevertheless, it is not an obstacle to our discussion at all, since
the same modification can be done on 2D-ACGs.
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Proof. Let Gi = 〈Σ0,Σi,Li, s〉 be the i-th projection of the given affine ACG
G , and G ′′

i = 〈Σi,0,Σi,L
′′
i , [s,Li(s)]〉 the linearized form of Gi obtained by

our method. Recall that we have a relabeling lexicon L0,i : Σ0,i → Σ0 that
satisfies the equation (3.5), i.e.,

{M ∈ A(Gi) | |L (M)|β is linear } = {L0,i(N) | N ∈ A(G ′′
i ) }.

Let G ′
i = 〈Σi,0,Σ0,Σi,L0,i,L

′′
i , [s,Li(s)]〉 for i = 1, 2. By applying Lemma 5.21

to two linear 2D-ACGs G ′
i with i = 1, 2, we get a 2D-ACG G ′′ such that

O(G ′′) = O(G ) ∩ (Λlin(Σ1) × Λlin(Σ2)).

We easily apply this method to any affine kD-ACGs with k ∈ N.
On the other hand, Theorem 3.8 does not hold for two-dimensional second-

order affine ACGs, as the following counterexample shows. Let G ∈ Gaff
tree,tree

(2, 1, 1) consist of the following lexical entries:

x ∈ C0 τ0(x) L1(x) L2(x)
A s # #
B s→ s→ s λxoyo.# λxoyo.cxy

Then,
O(G ) = {#} × T(Σ2).

Suppose that there is a linear ACG G ′ ∈ Glin
tree,tree(2, 1, 1) generating this lan-

guage. Without loss of generality, we assume that each vocabulary contains
neither useless constants nor useless atomic types. For G ′ = 〈Σ′

0,Σ1,Σ2,L
′
1,

L ′
2, s

′〉, let G ′
1 = 〈Σ′

0,Σ1,L
′
1, s

′〉. By O(G ′
1) = {#} and thus C ′

1 = {#}, we
easily see that every abstract constant a ∈ C ′

0 has nullary or unary type,
because the only closed linear terms in Λlin(Σ′

1) of second-order types are
λxo.x and #. Let

h = max
(
{ height(|L ′

2(a)|β) | a ∈ C
′
0 and τ ′0(a) = p ∈ A

′
0 }

∪ { height(|L ′
2(a)#|β) | a ∈ C

′
0 and τ ′0(a) = p→ q }

)

where the height of a tree is defined as usual. It is easy to see that cPP ∈
T(Σ2) −O2(G

′) for any tree P ∈ T(Σ2) of height h.
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5.7 Summary

Although symmetric treatment of syntax and semantics of natural language
is an important appeal of the ACG formalism as de Groote [15] states in
his first paper on the ACG, the mathematical properties of two-dimensional
extensions of ACGs have not been studied well so far. This chapter has
investigated the mathematical properties of 2D-ACGs, particularly the gen-
erative capacity of second-order 2D-ACGs. We have evaluated the genera-
tive capacity of 2D-ACGs by encoding existing two-dimensional formalisms,
namely, linear macro tree transducers (linear MTTs), synchronous tree ad-
joining grammars and deterministic tree walking transducers.

Table 5.1 summarizes the generative capacity of second-order 2D-ACGs
revealed in this chapter and preceding research, which has already shown that
finite state transducers [15] and synchronous tree substitution grammars [58]
are encodable by 2D-ACGs. The fact that several transducers, which define
relations of two languages in asymmetric ways, are encoded by ACGs, which
define relations of two languages in symmetric ways, can be thought of as
a variation of Nivat’s characterization of finite transducers by bimorphisms.
Through simulation of transducers, which model syntax-directed semantics,
by 2D-ACGs, we have shown how rich the expressive power of 2D-ACGs is.

The encoding methods for linear tree transducers, linear MTTs, and
synchronous tree substitution grammars are indeed straightforward as well
as de Groote and Pogodalla’s encodings for the variety of context-free for-
malisms. Therefore, ACGs generalize two-dimensional formalisms as well as
one-dimensional ones.

There are several subclasses of 2D-ACGs whose generative capacity re-
mains unclear. It is future work to characterize the expressive power of those
subclasses.

Table 5.1: Hierarchy of second-order two-dimensional ACGs

Finite State Transducers ⊆ Gstring,string(2, 2, 2)
Linear Tree Transducers = Gtree,tree(2, 1(sr), 1)

ε-free Linear Tree Transducers = Gtree,tree(2, 1(r), 1)
Linear Macro Tree Transducers = Gtree,tree(2, 1(sr), 2)

ε-free Linear Macro Tree Transducers = Gtree,tree(2, 1(r), 2)
Synchronous Tree Substitution Grammars ⊆ Gtree,tree(2, 1, 1)
Synchronous Tree Adjoining Grammars ⊆ Gtree,tree(2, 2(mon), 2(mon))
Deterministic Tree Walking Transducers ⊆ Gtree,string(2, 1(r), 4)

Gstring,string(2, n1, n2) for n1, n2 ≥ 4 = Gstring,string(2, 4, 4)





Chapter 6

Higher-Order Interpolation in
the Linear Lambda Calculus

The main result of this chapter has been published as [59].

6.1 Introduction

Parsing with ACGs and Interpolation

As pointed out by de Groote [15] and Pogodalla [42], parsing with ACGs
is closely related to higher-order interpolation in the linear lambda calculus,
though they are still different problems. Let M be a member of the abstract
language A(G ) of an ACG G , andM0 be obtained by replacing all occurrences
of constants by fresh variables x1, . . . , xn. Then, M can be represented as

M = (λx1 . . . xn.M0)a1 . . . an ∈ A(G ) (6.1)

for constants a1, . . . , an appearing in M (multiple occurrences of the same
constant are allowed). By the lexicon L of G , the equation (6.1) becomes

L (M) = P = P0L (a1) . . .L (an) ∈ O(G ) (6.2)

where P0 is identical to L (λx1 . . . xn.M0) except for the type assignment.
The problem of checking whether P ∈ Λ(Σ1) belongs to O(G ) thus becomes
that of finding a linear combinator λx1 . . . xn.M0 and constants a1, . . . , an

satisfying (6.2). If each ai and thus Pi = L (ai) is known, it reduces to
finding a linear combinator X such that

P = XP1 . . . Pn.

137
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This problem is called higher-order interpolation in the linear lambda cal-
culus, which is a restricted form of higher-order matching. For instance, if
a string ACG has no lexical ambiguity, that is, for each object constant c,
there is a unique abstract constant a such that L (a) contains c, then we can
uniquely determine the constants a1, . . . , an that should appear in M ∈ A(G ),
immediately from the given object term P . De Groote [14] has shown the
matching problem in the linear lambda calculus is in NP, while it was open
in the general case when he introduced ACGs. This gives an explanation
why de Groote [15] defines the ACG formalism on linear lambda calculus.
Motivated by this perspective, this chapter is devoted to investigating the
complexity of the higher-order interpolation problem in the linear lambda
calculus. We discuss the problem beyond the application of parsing with
ACGs.

Higher-Order Matching in the Linear Lambda Calculus

While the second-order unification problem modulo β and βη [12] and the
sixth-order matching problem modulo β are undecidable [32], Stirling [54]
recently shows that matching problem modulo βη is decidable. On the
other hand, there are some results on the complexity of matching in the
linear lambda calculus. These results hold for both β and βη-matching.
De Groote [14] shows that matching in the linear lambda calculus is NP-
complete, and by extending his result, Dougherty and Wierzbicki [5] show
that matching in the affine lambda calculus is NP-complete. We call match-
ing linear if the linearity is imposed on occurrences of unknowns, i.e., each
unknown occurs exactly once in the problem instances. Salvati and de
Groote [46] prove that NP-hardness of the second-order linear matching prob-
lem in the linear lambda calculus. Besides, Salvati [44] give an algorithm for
solving linear matching in the linear lambda calculus. There is another re-
sult on matching involving the linearity given by Levy [30]. He gives some
conditions under which second-order unification with the restriction that a
solution must substitute linear λ-terms for unknowns is decidable.

In Salvati and de Groote’s paper [46], they also discuss the interpolation
problem. Regrettably, Salvati and de Groote’s proof of NP-completeness of
third-order interpolation in the linear lambda calculus contains an error. In
this chapter we correct the flaw and prove NP-completeness of third-order
interpolation in the linear lambda calculus.

While no free variable occurs twice or more in a linear λ-term, the number
of occurrences of constants is not constrained. Since constants behave like
free variables, it is natural to asks whether NP-hardness still holds when we
exclude constants from problem instances. This chapter shows that fourth-
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order interpolation in the linear lambda calculus is NP-complete even in the
absence of constants. Therefore, multiple occurrences of constants do not
play an essential role for NP-hardness of higher-order matching in the linear
lambda calculus.

6.2 NP-Complete Problems

Definition 6.1. Let V be a finite set of Boolean variables. Introducing a twin
¬V = {¬v | v ∈ V} of V, we call elements of V and ¬V positive literals and
negative literals respectively. We then define the set of literals as V ∪¬V. A
formula in conjunctive normal form (CNF) F on V is a collection of clauses
which are non-empty subsets of V ∪ ¬V. A valuation ψ on V is a mapping
from V ∪ ¬V to {0, 1} such that ψ(v) + ψ(¬v) = 1 for all v ∈ V. A clause
C ∈ F is satisfied by a valuation ψ via a literal w ∈ V ∪ ¬V iff w ∈ C and
ψ(w) = 1. A CNF F is satisfied by a valuation ψ iff every C ∈ F is satisfied
by ψ. A CNF F is satisfiable iff there is ψ that satisfies F .

The satisfiability problem is the problem of deciding whether a given CNF
F is satisfiable or not. It is well known that the satisfiability problem is NP-
complete [4].

Definition 6.2. An mP-CNF F is a CNF such that each positive literal
v ∈ V occurs exactly m times in F . An nN-CNF F is a CNF such that each
negative literal ¬v ∈ ¬V occurs exactly n times in F .

A CNF F is polarized iff each clause C ∈ F contains only positive literals
or only negative literals. We call a clause C positive if C ⊆ V, and negative
if C ⊆ ¬V.

By combining the above definitions we define an mPnN-CNF to be a
CNF which is at the same time an mP-CNF and an nN-CNF.

We call variants of the satisfiability problem whose instances are restricted
to CNFs in a special form with the modifier expressing that form.

Theorem 6.3. The polarized 2P1N-satisfiability problem is NP-complete.

Proof. For a given CNF F on V, we may assume that for each v ∈ V, the
positive literal v occurs exactly the same number of times as the negative
literal ¬v in F . Otherwise, if v occurs m times more than ¬v, we add
appropriate number of clauses {¬v, ui,¬ui} to F for 1 ≤ i ≤ m where ui

are new Boolean variables. If v occurs m times more than ¬v, add clauses
{v, ui,¬ui} for 1 ≤ i ≤ m. Now, for a given CNF F on V = {v1, . . . , vl} such
that the positive literal vi occurs exactly the same number of times as the
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negative literal ¬vi for each Boolean variable vi ∈ V, we construct a polarized
2P1N-CNF F ′ on V ′ such that F is satisfiable iff F ′ is satisfiable. Let mi

be the number of occurrences of the positive literal vi (thus of the negative
literal ¬vi) for each vi ∈ V.

1. Let V ′ = { vi,j, v̄i,j | 1 ≤ i ≤ l, 1 ≤ j ≤ mi }.

2. Replace the j-th occurrence of the positive literal vi in F with vi,j,
and the j-th occurrence of the negative literal ¬vi in F with v̄i,j for
1 ≤ j ≤ mi.

3. Add the clauses {vi,j, v̄i,j} for 1 ≤ j ≤ mi, {¬vi,j,¬v̄i,j+1} for 1 ≤ j <
mi, and {¬vi,mi

,¬v̄i,1}.

By the construction, F ′ is a polarized 2P1N-CNF. It is clear that if F is
satisfied by a valuation ψ, then F ′ is also satisfied by ψ′ such that ψ′(vi,j) =
ψ(vi) and ψ′(v̄i,j) = ψ(¬vi) for all j ∈ {1, . . . , mi}.

Conversely, suppose that F ′ is satisfied by a valuation ψ′. We show that
ψ′(vi,j) = ψ′(vi,1) and ψ′(v̄i,j) = ψ′(¬vi,1) for all j ∈ {1, . . . , mi}. Then we
easily see that the valuation ψ such that ψ(vi) = ψ′(vi,1) satisfies F .

If ψ′(vi,1) = 1, then ψ′(v̄i,2) = 0 by {¬vi,1,¬v̄i,2} ∈ F ′. By {vi,2, v̄i,2} ∈ F ′,
we see ψ′(vi,2) = 1. This way we see that ψ′(vi,j) = 1 and ψ′(v̄i,j) = 0 for
2 ≤ j ≤ mi. By {¬vi,mi

,¬v̄i,1} ∈ F ′, we get ψ′(v̄i,1) = 0.

If ψ′(vi,1) = 0, then ψ′(v̄i,1) = 1 by {vi,1, v̄i,1} ∈ F ′. By {¬vi,mi
,¬v̄i,1} ∈

F ′, we see ψ′(vi,mi
) = 0. Similarly to the previous case, we see that ψ ′(vi,j) =

0 and ψ′(v̄i,j) = 1 for all j ∈ {1, . . . , mi}.

Definition 6.4. The string rearrangement problem is the problem of de-
termining whether there is a permutation π on {1, . . . , m} such that w =
wπ(1) . . .wπ(m) for a given string w and a sequence of string 〈w1, . . . ,wm〉.

Theorem 6.5. The string rearrangement problem is NP-complete.

Proof. Clearly the problem is in NP. The NP-hardness is shown by a reduc-
tion from the polarized1 2P1N-satisfiability problem. Let F = {C1, . . . , Cm,
D1, . . . ,Dn} be a polarized 2P1N-CNF on V = {v1, . . . , vl} where each Cj is
a positive clause and each Dk is a negative clause. Since for any valuation ψ,
for each variable vi ∈ V, there are at most two clauses that are satisfied by ψ
via vi or ¬vi, we can assume that 2l ≥ m+ n. If 2l < m+ n (it is decidable
in polynomial time), F is not satisfiable.

1The polarity is not a mandatory requirement for this proof.
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We define strings w, xi, yj for 1 ≤ i ≤ m, 1 ≤ j ≤ n on the alphabet
V = {c1, . . . , cm, d1, . . . , dn, f} by

w = v1 . . . vl with vi = fcµ(i,1)fdν(i)fcµ(i,2)f,

where µ(i, h) = j if the h-th occurrence of vi is in Cj for h = 1, 2,

and ν(i) = j if the unique occurrence of ¬vi is in Dj,

xi = fcif for 1 ≤ i ≤ m,

yi = fdif for 1 ≤ i ≤ n.

We see that

#a(w) ≥
∑

1≤i≤m

#a(xi) +
∑

1≤i≤n

#a(yi)

for all a ∈ V . If a is either cj or dk, then
∑

1≤i≤m #a(xi) +
∑

1≤i≤n #a(yi) =
1. Since each clause is not empty, #a(w) ≥ 1. If a = f, then #a(w) =
4l ≥

∑
1≤i≤m #a(xi) +

∑
1≤i≤n #a(yi) = 2(m + n) by the assumption that

2l ≥ m + n. Therefore, because the length of w is 7l and the sum of the
lengths of xi and yj for all i ∈ {1, . . . , m} and j ∈ {1, . . . , n} is 3(m+n), one
can find z1, . . . , z7l−3(m+n) ∈ V such that

#a(w) =
∑

1≤i≤m

#a(xi) +
∑

1≤i≤n

#a(yi) +
∑

1≤i≤7l−3(m+n)

#a(zi)

for all a ∈ V .
We show that there is a valuation ψ that satisfies F iff there is a permuta-

tion on the sequence 〈x1, . . . , xm, y1, . . . , yn, z1, . . . , z7l−3(m+n)〉 that rearranges
it to coincide with w.

First we show the “if” direction. Suppose that 〈x1, . . . , xm, y1, . . . , yn, z1,
. . . , z7l−3(m+n)〉 can be reordered to be equivalent to w. Then, each xj for
1 ≤ j ≤ m is used as a substring of vi for some i. and each yj for 1 ≤ j ≤ n
is used as a substring of vi for some i. We define a valuation ψ on V as
follows:

ψ(vi) =





1 if xj is used as a substring of vi for some j,

0 if yk is used as a substring of vi for some k,

any value otherwise.

Indeed ψ is well-defined. We cannot use both xj and yk as substrings of vi at
the same time, because of the occurrences of the symbol f. Each clause Cj is
satisfied by ψ with the literal vi if xj is used as a substring of vi, and Dk is
satisfied by ψ with the literal ¬vi if yk is used as a substring of vi.
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Conversely, if ψ satisfies F , one can find φ : F → V ∪ ¬V such that
φ(C) ∈ C and ψ(φ(C)) = 1 for all C ∈ {C1, . . . , Cm,D1, . . . ,Dn}. It never
happens that φ(Cj) = vi and φ(Dk) = ¬vi. Thus we can use each string xj

as a substring of vi if φ(Cj) = vi, and each string yk as a substring of vi if
φ(Dk) = vi. By the definition of zi for 1 ≤ i ≤ 7l− 3(m+ n), we can reorder
x1, . . . , xm, y1, . . . , yn, z1, . . . , z7l−3(m+n) to be equivalent to w.

6.3 Definitions

In this chapter, we extend the notion of λ-term introducing new atomic
terms, called unknowns. In order to distinguish the extended class of λ-
terms from usual unknown-free λ-terms, we call the latter pure terms. The
set of unknowns are denoted by U and the letters X and Y are used for
unknowns. Unknowns can be considered as a kind of variables that are never
bound, and should be substituted for by pure terms.

The definitions of Λ(Σ) and the type τ(M) of a term M ∈ Λ(Σ) are now
extended as follows:

• For every a ∈ C , a ∈ Λ(Σ).

• For every x ∈ X and α ∈ T (A ), xα ∈ Λ(Σ) and τ(xα) = α.

• For every X ∈ U and α ∈ T (A ), Xα ∈ Λ(Σ) and τ(Xα) = α.

• For M,N ∈ Λ(Σ), if τ(M) = (α → β), τ(N) = α, then (MN) ∈ Λ(Σ)
and τ((MN)) = β.

• For x ∈ X , α ∈ T (A ) and M ∈ Λ(Σ), (λxα.M) ∈ Λ(Σ) and
τ((λxα.M)) = (α→ τ(M)).

Other notions related to λ-terms, such as closed terms, linear terms, etc.,
are defined in the same way as in Chapter 2. Note that a closed term can
contain unknowns and that unknowns may occur any number of times in a
linear term.

Definition 6.6. A unification equation is a pair of closed terms 〈L,R〉 of

the same type. Let ~X be the unknowns in 〈L,R〉. A substitution σ = [ ~N/~X]

where ~N is a sequence of pure terms is a solution for 〈L,R〉 modulo β iff
Lσ =β Rσ. σ is a solution for 〈L,R〉 modulo βη iff Lσ =βη Rσ. A matching
equation is a unification equation 〈L,R〉 such that R is a pure term. An
interpolation equation is a matching equation 〈L,R〉 such that L has just
one occurrence of just one unknown as its head, i.e., L ≡ XL1 . . . Lm, where
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each Li contains no unknowns. The order of a unification equation is defined
to be the maximum of the orders of the types of the unknowns appear-
ing in the equation. The unification, matching, and interpolation problem
modulo β (βη) are decision problems which ask whether or not there is a
solution modulo β (βη) for given unification, matching, interpolation equa-
tions respectively. The unification, matching, and interpolation problem in
the linear lambda calculus allow only linear λ-terms as problem instances and
solutions.

6.4 Interpolation in the Linear Lambda Cal-

culus

While every interpolation equation 〈XL1 . . . Lm, R〉 has a trivial solution
[λx1 . . . xm.R/X] (xi 6∈ Fv(R)) in the (general) lambda calculus, the inter-
polation problem in the linear lambda calculus is not trivial. That the in-
terpolation problem in the linear lambda calculus is in NP is an immediate
corollary of the following theorem.

Theorem 6.7 (de Groote [14]). The matching problem in the linear lambda
calculus is NP-complete.

Theorem 6.8 (Salvati and de Groote [46]). Second-order matching in
the linear lambda calculus is NP-complete even if every unknown appears
exactly once.

Salvati and de Groote [46, Proposition 3] have claimed that third-order
interpolation in the linear lambda calculus is NP-complete by a reduction
from the 1N-satisfiability problem (Theorem 6.3). For a given 1N-CNF
F = {C1, . . . , Cm} on V = {v1, . . . , vl}, they define a third-order interpo-
lation equation 〈L,R〉 on Σ = 〈A ,C , τ〉 as follows:2

A = {o}, C = {a, cj, g | 1 ≤ j ≤ m},

τ(a) = o, τ(cj) = om→ o, τ(g) = ol→ o,

L ≡ X(λxo
1 . . . x

o
m.c1x1 . . . xm) . . . (λxo

1 . . . x
o
m.cmx1 . . . xm),

R ≡ gV1 . . . Vl for Vi ≡ NiPi,1 . . . Pi,m

where Ni ≡ cj for ¬vi ∈ Cj and Pi,j ≡

{
cja

m if vi ∈ Cj,

a otherwise.

2An inessential change is made to the original reduction to facilitate comparison with
our reduction.
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We present a counterexample to their claim that F is satisfiable iff 〈L,R〉
has a solution. Consider their reduction from the following 1N-CNF F :

Instance F : C1 = {v1}, C2 = {¬v1}

Reduction 〈L,R〉 : L ≡ X(λx1x2.c1x1x2)(λx1x2.c2x1x2)

R ≡ g
(
c2(c1aa)a

)

If their reduction is correct, 〈L,R〉 has no solution, since F is not satisfiable.
In fact, however, [λyo2→o

1 yo2→o
2 .g

(
y2(y1aa)a

)
/X] is a solution for 〈L,R〉.

Actually, the proposition that third-order interpolation in the linear lambda
calculus is NP-complete is an easy corollary to the NP-hardness of the string
rearrangement problem.

Proposition 6.9. Third-order interpolation modulo β (βη) in the linear
lambda calculus is NP-complete even if all the constants, variables (other
than the unknown) and arguments of the unknown in the problem instances
have types o or o→ o.

Proof. Let the pair of w and 〈w1, . . . ,wm〉 on an alphabet be an instance of the
string rearrangement problem. Clearly it has a solution iff the interpolation
equation

〈X/w1/ . . . /wm/, /w/〉

admits a solution.

It is not hard to show that the second-order interpolation problem in
the linear lambda calculus is in P. If a given instance 〈XL1 . . . Lm, R〉 of the
interpolation problem in the linear lambda calculus is second-order, then all
Li have atomic types. 〈XL1 . . . Lm, R〉 has a solution [λz1 . . . zm.S/X] iff R
can be represented as R ≡ S[L1/z1, . . . , Lm/zm], because substituting a term
of an atomic type for a variable produces no new β-redex. Thus, the following
procedure determines whether 〈XL1 . . . Lm, R〉 admits a solution.

let L := {L1, . . . , Lm} and S := R;
while L 6= ∅ do

take Li ∈ L such that Li is not a proper subterm of any elements of L;
let L := L − {Li};

if there is S ′ such that S = S ′[Li/zi] and zi occurs exactly once in S ′

then let S := S ′

else output “No” and halt;
end if

end while
output “Yes” (λz1 . . . zm.S is a solution);
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In the next section, we will show that interpolation in the linear lambda-
calculus is still NP-hard even in the absence of constants. For this purpose,
we present another proof for the NP-hardness of third-order interpolation in
the linear lambda calculus by a reduction from the polarized 1N-satisfiability
problem in the remainder of this section. The reduction is an elaboration
of the one by Salvati and de Groote. We then eliminate constants from the
new reduction with a certain technique, which does not work for the simple
reduction in the proof for Proposition 6.9.

Definition 6.10. Let F = {C1, . . . , Cm,D1, . . . ,Dn} be a polarized 1N-CNF
on V = {v1, . . . , vl} where each Cj is a positive clause and each Dk is a
negative clause. First we introduce the following two functions µ : {1, . . . , l}×
{1, . . . , m} → {0, 1, . . . , m} and ν : {1, . . . , l} → {1, . . . , n} which represent
the positive and negative occurrences of each Boolean variable respectively:

µF(i, j) =

{
j if vi ∈ Cj,

0 otherwise,

νF (i) = k for ¬vi ∈ Dk.

We then define an interpolation equation 〈LF , RF〉 on a higher-order signa-
ture Σ = 〈A ,C , τ〉, where A = {o}, C = {cj, dk, f, g | 0 ≤ j ≤ m and
1 ≤ k ≤ n}, and τ(cj) = o, τ(dk) = om → o, τ(f) = o → o, τ(g) = ol → o.
Let

LF ≡ XC1 . . . CmD1 . . .Dn

where





Cj ≡ fcj,

Dk ≡ λxo
1 . . . x

o
m.dk(fx1) . . . (fxm),

τ(X) = om → (om → o)n → o and ord(X) = 3,

RF ≡ gV1 . . . Vl

where Vi ≡ dν(i)(fcµ(i,1)) . . . (fcµ(i,m)).

The intuition behind the reduction is the following. Each Cj in LF rep-
resents the positive clause Cj and each Dk in LF represents the negative
clause Dk. Each Vi in RF represents the occurrences of the Boolean variable
vi ∈ V in the clauses of F . Vi contains cj for j 6= 0 (respectively dk) iff
vi appears in Cj (resp. ¬vi appears in Dk). If F is satisfied by a valuation
ψ, then for each Cj (resp. Dk), there is vi ∈ Cj (resp. ¬vi ∈ Ck) such that
ψ(vi) = 1 (resp. ψ(¬vi) = 1). In this case, we can construct a solution
[λy1 . . . ymz1 . . . zn.gU1 . . . Ul/X] which puts the argument Cj (resp. Dk) of X
into Ui via yj (resp. zk) and makes Ui equivalent to Vi by β-reduction (see
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Example 6.11). Conversely if 〈LF , RF〉 has a solution [S/X], then S must
be of the form λy1 . . . ymz1 . . . zn.gU1 . . . Ul and must put each argument Cj

(resp. Dk) of X into Ui for some i via yj (resp. zk) by the linearity. Then, one
can find a valuation ψ such that if S puts the argument Cj (resp. Dk) into
Ui, then ψ satisfies Cj via vi (resp. Dk via ¬vi). The presence of the constant
f is the essential difference between Salvati and de Groote’s reduction [46]
and ours. Due to the number of occurrences of f in Vi for each i, Cj and
Dk cannot simultaneously be put into the same Ui for any j and k. This
corresponds to the fact that any valuation ψ on V cannot simultaneously
satisfy Cj via vi and Dk via ¬vi (see Example 6.12).

Example 6.11. Instance F : C1 = {v1}, C2 = {v1, v2}, D1 = {¬v1,¬v2}

Reduction 〈LF , RF 〉 : LF ≡ X(fc1)(fc2)
(
λx1x2.d1(fx1)(fx2)

)

RF ≡ g
(
d1(fc1)(fc2)

)(
d1(fc0)(fc2)

)

Let ψ be defined as ψ(v1) = 1, ψ(v2) = 0. Corresponding to the fact
that ψ satisfies C1 via v1, C2 via v1, and D1 via ¬v2, we give a solution
[λy1y2z1.gU1U2/X] which puts the argument C1 of X into U1, C2 into U1,
and D1 into U2. That is, we give a solution [S/X] where

S ≡ λy1y2z1.g(d1y1y2)(z1c0c2).

Indeed, we obtain

LF [S/X] ≡ SC1C2D1 �β g(d1C1C2)(D1c0c2) �β RF .

Example 6.12. Instance F : C1 = {v1}, C2 = {v2}, D1 = {¬v1,¬v2}

Reduction 〈LF , RF 〉 : LF ≡ X(fc1)(fc2)
(
λx1x2.d1(fx1)(fx2)

)

RF ≡ g
(
d1(fc1)(fc0)

)(
d1(fc0)(fc2)

)

F is not satisfiable and 〈LF , RF〉 has no solution. e.g.,

LF [λy1y2z1.g
(
d1y1(fc0)

)(
z1c0y2

)
/X]

�β g
(
d1(fc1)(fc0)

)(
d1(fc0)(f(fc2))

)

6=β RF .

Lemma 6.13. 〈LF , RF〉 admits a solution whenever F is satisfiable.

Proof. Suppose that F is satisfied by a valuation ψ. Then, for each clause
of F , one can choose a literal via which ψ satisfies the clause. Let a function
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φ from F to V ∪ ¬V be such a choice. That is, φ(Cj) ∈ Cj, ψ(φ(Cj)) = 1,
φ(Dk) ∈ Dk, and ψ(φ(Dk)) = 1. Define S by

S ≡ λy1 . . . ymz1 . . . zn.gU1 . . . Ul

Ui ≡

{
zν(i)cµ(i,1) . . . cµ(i,m) if φ(Dν(i)) = ¬vi,

dν(i)Ui,1 . . . Ui,m otherwise,

Ui,j ≡

{
yj if φ(Cj) = vi,

fcµ(i,j) otherwise.

First we confirm the linearity of S. Each zk indeed occurs exactly once in
S, since zk appears in Ui iff φ(Dk) = ¬vi. For yj, let i be such that φ(Cj) = vi.
Then, ψ(vi) = 1 and thus φ(Dν(i)) 6= ¬vi because ψ(φ(Dν(i))) = 1. Hence,
Ui ≡ dν(i)Ui,1 . . . Ui,m and the only occurrence of yj in S is in Ui,j. Therefore,
S is a linear λ-term.

In order to see that LF [S/X] �β RF , it is enough to check that Uiσ �β Vi

for the substitution σ = [C1/y1, . . . , Cm/ym, D1/z1, . . . , Dn/zn]. If φ(Dν(i)) =
¬vi, then

Uiσ ≡ Dν(i)cµ(i,1) . . . cµ(i,m)

≡ (λx1 . . . xm.dν(i)(fx1) . . . (fxm))cµ(i,1) . . . cµ(i,m)

�β dν(i)(fcµ(i,1)) . . . (fcµ(i,m))

≡ Vi.

If φ(Dν(i)) 6= ¬vi, then it is easy to see that Ui,jσ ≡ fcµ(i,j). If φ(Cj) 6= vi,
Ui,jσ ≡ fcµ(i,j)σ ≡ fcµ(i,j). Otherwise, φ(Cj) = vi implies µ(i, j) = j and
Ui,jσ ≡ yjσ ≡ Cj ≡ fcj ≡ fcµ(i,j). Thus,

Uiσ ≡ dν(i)Ui,1 . . . Ui,mσ �β dν(i)(fcµ(i,1)) . . . (fcµ(i,m)) ≡ Vi.

Lemma 6.14. F is satisfiable whenever 〈LF , RF〉 admits a solution.

Proof. Suppose that [S/X] is a solution for 〈LF , RF〉. We can assume that
S is in long normal form and S ≡ λy1 . . . ymz1 . . . zn.S

′. Let σ denote the
substitution [ ~C/~y, ~D/~z]. Since S ′σ �β RF , S ′ must be equal to gU1 . . . Ul

for some λ-terms Ui such that Uiσ �β Vi. It is obvious that the head of
each Ui is either zν(i) or dν(i). We show that F is satisfied by the valuation
ψ defined as follows:

ψ(vi) =

{
0 if the head of Ui is zν(i)

1 otherwise
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We show that each positive clause Cj ∈ F is satisfied by ψ. Suppose that
yj appears in Ui. Then, the head of Ui cannot be zk for any k, because if both
yj and zk are in Ui, Uiσ contains at least (m + 1) occurrences of f, so Uiσ
never β-reduces to Vi, which contains exactly m occurrences of f. Thus, the
head of Ui is dν(i) and ψ(vi) = 1. Since yjσ ≡ fcj, Uiσ and Vi must contain
cj and this implies µ(i, j) = j, i.e., vi ∈ Cj. ψ satisfies Cj via vi.

We show that each negative clause Dk ∈ F is satisfied by ψ. Suppose
that zk appears in Ui. Since zkσ contains dk, k = ν(i) and the head of Ui is
zk. Therefore, ψ(vi) = 0 and ¬vi ∈ Dk. ψ satisfies Dk via ¬vi.

Proposition 6.15. Third-order interpolation modulo β (βη) in the linear
lambda calculus is NP-complete.

Proof. By Theorem 6.7 and Lemmas 6.13 and 6.14.

6.5 Elimination of Constants

In this section, we show that the interpolation problem in the linear lambda
calculus is NP-hard even if there are no constants, by eliminating constants
in 〈LF , RF〉 in Definition 6.10.

For general unification problem, it is easy to construct a constant-free
〈P ∗, Q∗〉 from a unification equation 〈P,Q〉, such that 〈P,Q〉 has a solution iff
〈P ∗, Q∗〉 has a solution. We obtain P ∗ and Q∗ by successive transformations
performed on P and Q: first we replace the constants ~a by fresh variables ~a,
then we replace each unknown Xi with Yi~a and finally we abstract the free
variables. If [Si/Xi] is a solution for 〈P,Q〉, then [λ~a.S∗

i /Yi] is a solution for
〈P ∗, Q∗〉, where S∗ is obtained by replacing each constant a by the variable
a. If [S∗

i /Yi] is a solution for 〈P ∗, Q∗〉, then [S∗
i~a/Xi] is a solution for 〈P,Q〉.

However, such a transformation does not work for the unification prob-
lem in the linear lambda calculus, because free variables can occur at most
once in a linear λ-term, while constants can occur any number of times. To
construct a linear interpolation equation 〈L∗

F ≡ YC∗
1 . . . C

∗
mD

∗
1 . . .D

∗
n, R

∗
F〉

by eliminating constants from 〈LF , RF〉 defined in Definition 6.10, we adopt
the following strategy:

• Let T be among C1, . . . , Cm, D1, . . . , Dn, RF .

• Let T ′ be the result of replacing occurrences of each constant in T with
suitable free variables or λ-terms constructed from free variables.

• Let T ∗ ≡ λ~x.T ′ for a sequence ~x of the elements of Fv(T ′).
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The main issue is what variable or λ-term each occurrence of a constant
should be replaced with. The formal definition and an example are given
in Definition 6.16 and Example 6.17. We give the basic strategy of our
transformation here. First, for each constant a, we provide an atomic type
pa. Second we replace the i-th occurrence of a in T with the application
xa,iya,i of variables xa,i of type pa → τ(a) and ya,i of type pa. Finally, we close
T by λ~x~y. This way, we can avoid identifying λ-terms which are surrogates
for distinct constants of the same type, while preserving the well-typedness
and the linearity of the interpolation equation. If 〈LF , RF〉 has a solution
[S/X], then 〈L∗

F , R
∗
F〉 also has a solution [S∗/Y] which does not essentially

differ from [S/X]. Each occurrence of a constant a in S is replaced with
the application xa,iya,i of two bound variables of R∗

F for the appropriate i.
Moreover, [S∗/Y] lets the arguments T ∗ of the unknown Y be applied to
bound variables of R∗

F which constitute the surrogates for constants which
appear in T .

A major problem is that one may construct a solution which causes a sub-
stitution of a complex λ-term for the bound variable xa,i of an argument T ∗ of
the unknown Y, since a λ-term which has the type pa → τ(a) is not necessar-
ily a bound variable xa,j in R∗

F for some j. For instance, consider the interpo-
lation equation 〈X/ac//b/, /abc/〉 where τ(a) = τ(b) = τ(c) = str . Clearly
it has no solution. By applying the above conversion to 〈X/ac//b/, /abc/〉,
we obtain the following equation:

〈 Y
(
λxpa→str

a
ypa

a
xpc→str

c
ypc

c
zo.xaya(xcycz)

)(
λxpb→str

b
ypb

b
zo.xbybz

)
,

λxpa→str
a

ypa

a
xpb→str

b
ypb

b
xpc→str

c
ypc

c
zo.xaya

(
xbyb(xcycz)

)
〉,

but, this has a solution

[λw
(pa→str)→pa→(pc→str)→pc→str

1 w
(pb→str)→pb→str

2 .

λxpa→str
a

ypa

a
xpb→str

b
ypb

b
xpc→str

c
ypc

c
.w1xaya

(
λvpc

c
zo.w2xbyb(xcvcz)

)
yc / Y].

This is the reason why we do not employ the reduction from the string
rearrangement problem as in the proof of Proposition 6.9 for constant-free
cases. Fortunately, we can tightly restrict λ-terms that can be substituted
for bound variables in the arguments T ∗ of Y, when we employ the reduction
in Definition 6.10 as a basis for the new reduction. Recall that in 〈LF , RF〉
in Definition 6.10, cj is always an argument of f, fcj is of dk for some k, and
a λ-term whose head is dk is of g. Hence we can let λ-terms in 〈L∗

F , R
∗
F〉

which are surrogates for cj have type q, surrogates for f have type q → r,
surrogates for dk have type rm → t, and surrogates for g have type tl → u.

Now, we give a formal definition of the linear interpolation equation
〈L∗

F , R
∗
F〉 for a given polarized 1N-CNF F .
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Definition 6.16. Let F = {C1, . . . , Cm,D1, . . . ,Dn} be a polarized 1N-CNF
on V = {v1, . . . , vl} where C1, . . . , Cm are positive clauses and D1, . . . ,Dn are
negative clauses. Two functions µ and ν are defined as in Definition 6.10.
Let A = {pj, q, r, sk, t, u | 0 ≤ j ≤ m, 1 ≤ k ≤ n}. Let ~wF be a sequence of
the variables in the set

{c
pµ(i,j)

i,j , c̄
pµ(i,j)→q

i,j , f q→r
i,j , d

sν(i)
i,ν(i), d̄

sν(i)→rm→t

i,ν(i) , gtl→u | 1 ≤ i ≤ l and 1 ≤ j ≤ m}.

〈L∗
F , R

∗
F〉 is defined by

L∗
F ≡ YC∗

1 . . . C
∗
mD

∗
1 . . .D

∗
n where





C∗
j ≡ λf q→rc̄

pj→q

j c
pj

j .f(c̄jcj)

D∗
k ≡ λd̄sk→rm→t

k dsk

k f
q→r
1 . . . f q→r

m xq
1 . . . x

q
m.d̄kdk(f1x1) . . . (fmxm)

τ(Y) = τ(C∗
1 ) → · · · → τ(C∗

m) → τ(D∗
1) → · · · → τ(D∗

n) → τ(R∗
F )

R∗
F ≡ λ~wF .g

tl→uV ∗
1 . . . V

∗
l where

V ∗
i ≡ d̄

sν(i)→rm→t

i,ν(i) d
sν(i)

i,ν(i)

(
f q→r

i,1 (c̄
pµ(i,1)→q

i,1 c
pµ(i,1)

i,1 )
)
. . .

(
f q→r

i,m (c̄
pµ(i,m)→q

i,m c
pµ(i,m)

i,m )
)
.

Indeed the above λ-terms are well-typed.

τ(C∗
j ) = (q → r) → (pj → q) → pj → r,

τ(D∗
k) = (sk → rm → t) → sk → (q → r)m → qm → t,

ord(Y) = 4.

Throughout this section, we use the following type assignment to variables
for 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n, which is consistent with the above
definition:

τ(cj) = pj, τ(ci,j) = pµ(i,j), τ(c̄j) = pj → q, τ(c̄i,j) = pµ(i,j) → q,

τ(dk) = τ(di,k) = sk, τ(d̄k) = τ(d̄i,k) = sk → rm → t,

τ(f) = τ(fj) = τ(fi,j) = q → r, τ(g) = tl → u,

τ(xj) = q, τ(yj) = τ(C∗
j ), τ(zk) = τ(D∗

k).



6.5 Elimination of Constants 151

Example 6.17. Instance F : C1 = {v1}, C2 = {v2}, D1 = {¬v1,¬v2}

Reduction with Constants 〈LF , RF〉 :

LF ≡ X(fc1)(fc2)
(
λx1x2.d1(fx1)(fx2)

)

RF ≡ g
(
d1(fc1)(fc0)

)(
d1(fc0)(fc2)

)

Reduction without Constants 〈L∗
F , R

∗
F〉 :

L∗
F ≡ Y

(
λfc̄1c1.f(c̄1c1)

)(
λfc̄2c2.f(c̄2c2)

)
(
λd̄1d1f1f2x1x2.d̄1d1(f1x1)(f2x2)

)

R∗
F ≡ λ~wF .g

(
d̄1,1d1,1

(
f1,1(c̄1,1c1,1)

)(
f1,2(c̄1,2c1,2)

))

(
d̄2,1d2,1

(
f2,1(c̄2,1c2,1)

)(
f2,2(c̄2,2c2,2)

))

where the type of each variable is as Definition 6.16. F is not satisfiable and
〈LF , RF〉 and 〈L∗

F , R
∗
F〉 have no solution. Note that

[λy1y2z1 ~wF .g
(
z1d̄1,1d1,1f1,1f1,2(c̄1,1c1,1)(c̄1,2c1,2)

)
(
d̄2,1d2,1(y1f2,1c̄2,1c2,1)(y2f2,2c̄2,2c2,2)

)
/ Y]

is not a solution for 〈L∗
F , R

∗
F〉. (y1f2,1c̄2,1c2,1) is not a λ-term of the simply

typed lambda calculus, for τ(y1) = (q → r) → (p1 → q) → p1 → r but
τ(c̄2,1) = pµ(2,1) → q = p0 → q and τ(c2,1) = pµ(2,1) = p0.

Lemma 6.18. 〈L∗
F , R

∗
F〉 admits a solution whenever F is satisfiable.

Proof. Suppose that ψ is a valuation which satisfies F . As in the proof of
Lemma 6.13, we can find φ : F → (V ∪ ¬V) which indicates a literal via
which each clause is satisfied. We show that a solution is given by [S/Y]
where

S ≡ λy1 . . . ymz1 . . . zn ~wF .gU1 . . . Ul where

Ui ≡

{
zν(i)d̄i,ν(i)di,ν(i)fi,1 . . . fi,m(c̄i,1ci,1) . . . (c̄i,mci,m) if φ(Dν(i)) = ¬vi,

d̄i,ν(i)di,ν(i)Ui,1 . . . Ui,m otherwise,

Ui,j ≡

{
yjfi,j c̄i,jci,j if φ(Cj) = vi,

fi,j(c̄i,jci,j) otherwise.

Indeed S is a well-typed closed linear λ-term. The linearity of S can be
checked as in the proof of Lemma 6.13. We check the well-typedness of S.
Recall that τ(zν(i)) = (sν(i) → rm → t) → sν(i) → (q → r)m → qm → t,
τ(d̄i,ν(i)) = sν(i) → rm → t, τ(di,ν(i)) = sν(i), τ(fi,j) = q → r and τ(c̄i,jci,j) =
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q. Hence, Ui is well-typed and has the type t if φ(Dν(i)) = ¬vi. If φ(Dν(i)) 6=
¬vi, it is enough to check that each Ui,j has type r. If φ(Cj) = vi and
Ui,j ≡ yjfi,j c̄i,jci,j, then vi ∈ Cj, τ(c̄i,j) = pµ(i,j) → q = pj → q and τ(ci,j) =
pµ(i,j) = pj. Recall that τ(yj) = (q → r) → (pj → q) → pj → r and
τ(fi,j) = q → r. Hence, Ui,j is well-typed and has the type r. If φ(Cj) 6= vi, it
is clear that Ui,j is well-typed and has the type r. Therefore, S is well-typed.

Second we show that L∗
F [S/Y] �β R

∗
F . By the definition, L∗

F [S/Y] �β

λ~wF .gU1 . . . Ulσ for σ = [ ~C∗/~y, ~D∗/~y]. It is enough to show that Uiσ �β V
∗
i .

If φ(Dν(i)) = ¬vi, then

Uiσ ≡ D∗
ν(i)d̄i,ν(i)di,ν(i)fi,1 . . . fi,m(c̄i,1ci,1) . . . (c̄i,mci,m)

�β d̄i,ν(i)di,ν(i)

(
fi,1(c̄i,1ci,1)

)
. . .

(
fi,m(c̄i,mci,m)

)

≡ V ∗
i .

Otherwise, Ui ≡ d̄i,ν(i)di,ν(i)Ui,1 . . . Ui,m. It is obvious that Ui,jσ �β fi,j(c̄i,jci,j)
for all j, since C∗

j fi,j c̄i,jci,j �β fi,j(c̄i,jci,j).

Lemma 6.19. Suppose that a linear λ-term M contains no free variables
other than the elements of ~wF and y1, . . . , ym, z1, . . . , zn.

If M has an atomic type δ and contains a subterm N of type γ1 → · · · →
γi → γ with γ ∈ A , then γ ≤ δ where ≤ is the partial order on A such that
pj � q � r � t � u for 0 ≤ j ≤ m and sk � t � u for 1 ≤ k ≤ n.

If τ(M) = q → r, then M =η fi,j for some i and j.

Lemma 6.20. Suppose that a subterm of a linear λ-term M has an atomic
type p. Then, for every N such that M =β N , N has a subterm of type p.

Lemma 6.21. F is satisfiable whenever 〈L∗
F , R

∗
F 〉 admits a solution.

Proof. Suppose that [S/Y] is a solution. We can assume that S is β-normal
and S ≡ λy1 . . . ymz1 . . . zn ~wF .S

′. Because of the type of the variable g in
R∗

F , the head of S ′ is neither yj nor zk. S ′ must be gU1 . . . Ul for some

U1, . . . , Ul of type t. Let σ = [ ~C∗/~y, ~D∗/~z]. Since SC∗
1 . . . C

∗
mD

∗
1 . . .D

∗
n �β

λ~wF .gU1 . . . Ulσ �β λ~wF .gV
∗
1 . . . V

∗
l , we have Uiσ �β V

∗
i . Note that

(*) Ui contains no free variables other than the elements of

Fv(V ∗
i ) ∪ {yj, zk | 1 ≤ j ≤ m, 1 ≤ k ≤ n}

= {d̄i,ν(i), di,ν(i), fi,j, c̄i,j, ci,j, yj, zk | 1 ≤ j ≤ m, 1 ≤ k ≤ n}.

Since Ui has type t, the head of Ui must be d̄i,ν(i) or zk for some k.
First, we show that if Ui contains zk, then zk is the head of Ui and Ui

contains neither yj nor zk′ for any j and k′ 6= k. Since zkσ ≡ D∗
k contains a
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variable of type sk, Uiσ and its β-normal form V ∗
i contain a subterm of type

sk by Lemma 6.20. This implies that k = ν(i) and V ∗
i contains no subterm

of type sk′ for any k′ 6= k and thus Uiσ does so. Therefore, Ui does not
contain zk′ for any k′ 6= k. If Ui ≡ d̄i,ν(i)Mν(i)R1 . . . Rm for τ(Mν(i)) = sν(i)

and τ(Rh) = r for 1 ≤ h ≤ m, then zk cannot occur in Ui by Lemma 6.19.
Therefore, if Ui contains zk, then Ui is of the form

Ui ≡ zkNkMkF1 . . . FmQ1 . . . Qm

where τ(Nk) = sk → rm → t, τ(Mk) = sk, τ(Fh) = q → r, and τ(Qh) = q
for 1 ≤ h ≤ m. is proved. We check that yj cannot occur in Nk, Mk, Qh

or Fh for any h. It is obvious that yj is not in Mk, Qh or Fh by (*) and
Lemma 6.19. Since Nk does not contain zk′ for any k′, Nk can be written as

Nk ≡ λdsk

k w
r
1 . . . w

r
m.d̄i,ν(i)dkR1 . . . Rm

where τ(Rh) = r for all h (provided that ν(i) = k). It is easy to see that if
wh appears in some Rh′ , then Rh′ = wh. Thus the sequence R1 . . . Rm is just
a permutation of w1 . . . wm. yj does not appear in Nk. Therefore, yj cannot
occur in Ui unless the head of Ui is d̄i,ν(i).

Now, we show that F is satisfied by the valuation ψ defined as follows:

ψ(vi) =

{
0 if the head of Ui is a variable zk for some k,

1 otherwise.

By the linearity of S, each variable y1, . . . , ym, z1, . . . , zn appears in Ui for
some i. To show that each positive clause Cj is satisfied by ψ, suppose that
yj occurs in Ui. The above discussion claims that the head of Ui is d̄i,ν(i) and
thus ψ(vi) = 1. Since yjσ ≡ C∗

j contains a variable of type pj, Uiσ and its
β-normal form V ∗

i contain a subterm of type pj by Lemma 6.20. Therefore,
τ(ci,j) = pµ(i,j) = pj and vi ∈ Cj. Thus ψ satisfies Cj via vi.

To show that each negative clause Dk is satisfied by ψ, suppose that zk

occurs in Ui. The above discussion claims that zk is the head of Ui and
k = ν(i). Therefore, ψ satisfies Dk via ¬vi.

Theorem 6.22. Fourth-order interpolation modulo β (βη) in the linear
lambda calculus in the absence of constants is NP-complete.

Proof. By Theorem 6.7 and Lemmas 6.18 and 6.21.

The order of the equation in Definition 6.16 is higher than the one in Def-
inition 6.10 by one, though the maximum order of the types of the variables
appearing in the former equation is the same as the one of the constants in
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the latter. The reason of the increase of the order is due to the presence of
λ-abstraction.

It is easy to see that Theorem 6.22 does not hold for the third-order case
unless P = NP. For an interpolation equation 〈XL1 . . . Lm, R〉, if Li is a
constant-free closed linear λ-term whose type is at most second-order, then
Li ≡ λxpi

i .xi for some atomic type pi ∈ A . Hence 〈XL1 . . . Lm, R〉 has a
linear solution modulo β (resp. βη) iff (resp. the η-long form of) R has a
subterm of type pi for every i by Lemma 6.20.



Chapter 7

Conclusions

This thesis has investigated the mathematical properties of some extensions
and restrictions of ACGs. In particular, the aspect of ACGs as a generaliza-
tion of well-established grammar formalisms is investigated.

In Chapter 3, we have shown that allowing deleting operations do not
enrich the expressive power of ACGs. The result entails the equivalence
between linear CFTGs and non-duplicating CFTGs, and between LCFRSs
and MCFGs, as corollaries. It is future work whether our procedure for
elimination of vacuous λ-abstraction can be generalized so that Fisher’s result
[8, 9] is covered.

In Chapter 4, we have proposed a lexicalization method of semilexicalized
ACGs which preserves the order of the abstract vocabulary. Our result en-
tails that LCFRSs admit lexicalization. Moreover, our lexicalization method
for second-order ACGs has a close connection with Schabes et al.’s preced-
ing research [47, 48] that converts finitely ambiguous CFGs into lexicalized
TAGs. There remains an open question, whether or not second and third-
order semilexicalized ACGs can be lexicalized preserving the orders of the
lexicons. If this open problem is solved in the affirmative, it would give a solu-
tion for the corresponding problems for mildly context-sensitive formalisms.
To answer the question, it seems inevitable to analyze the possible forms of
object terms assigned to abstract constants by the lexicon.

In Chapter 5, we have presented that several well-known tree transducer
formalisms are encodable in two-dimensional ACGs. In particular, we have
seen the equivalence between linear macro tree transducers and ACGs be-
longing to Gtree(2, 1(sr), 2). Therefore, the ACG formalism has the rich
potential as a general framework in which other existing two-dimensional
formalisms, as well as one-dimensional formalisms, may be encoded. The
hierarchy of second-order two-dimensional ACGs, however, contains many
subclasses whose generative capacity is not known yet, while the hierar-
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chy of second-order one-dimensional ACGs has been characterized almost
completely. More detailed characterization of the hierarchy of second-order
two-dimensional ACGs is future work.

Those results show that the ACG formalism can be thought of as a gen-
eralization of existing grammar formalisms in various meanings. ACGs en-
code not only individual grammars, but also operations on them, i.e., lin-
earization and lexicalization. Moreover, ACGs generalize two-dimensional
formalisms as well as one-dimensional ones. This thesis demonstrates that in-
vestigating ACGs is to study various mathematical properties of many other
well-established grammar formalisms including, but not limited to, mildly
context-sensitive grammars.

On the other hand, in Chapter 6, we have proved that third-order inter-
polation in the linear lambda calculus is NP-complete, and moreover, fourth-
order interpolation in the linear lambda calculus is NP-complete even when
we exclude constants from the problem instances. Those issues are not about
the ACG formalism itself, though they (in particular the former) are moti-
vated by a topic on ACGs.

Since the ACG is a simple formalism based on simply typed linear lambda
calculus, investigation of ACGs sometimes offers motivations and topics to
the fields of lambda-calculus and linear logic. For instance, Salvati [43] intro-
duces an extended type system for the linear lambda calculus, called syntactic
descriptions, for parsing second-order ACGs, and he also proposes an algo-
rithm for solving the linear matching problem in the linear lambda calculus
that utilizes syntactic descriptions [44]. Kanazawa [25] presents a new proof
for the Interpolation Theorem for the implicational fragment of intuitionistic
logic and its substructural subsystems, which would be used for an algo-
rithm that learns two-dimensional ACGs generating pairs of a string and its
meaning [24]. Conversely, since the simply typed lambda calculus has been
studied very well so far, we have plenty of useful tools for investigating the
mathematical properties of ACGs. Indeed, the basic mathematical proper-
ties of (lexicalized) ACGs shown in Chapter 2 and 5 are directly derived from
existing theorems on the intuitionistic linear logic, and moreover, other theo-
rems presented in this thesis rely on existing theorems and techniques in the
intuitionistic linear logic implicitly or explicitly. This thesis strengthens the
concept that the ACG formalism might be a linkage between mathematical
linguistics and logic.
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