Computational Learning Theory Formal Concept Analysis and Frequent Item Set Mining

Akihiro Yamamoto 山本 章博

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/ akihiro@i.kyoto-u.ac.jp

Contents

- Item Set Mining and the A Priori Algorithm
- Formal Concept Analysis
- Closed Patterns

ITEM SET MINING

A Simple Example

• Set of all items: $X = \{A, B, C, D, E, F\}$

Transaction ID	Item Sets
•••	
3256	$\{A, C, D\}$
3257	$\{B, C, E\}$
3258	$\{A, B, C, E\}$
3259	$\{A, B, E, F\}$
•••	• • • •

• "Items A and C might be bought together."

Bit-vector Representation

• Every transaction can be represented as a bitvector of *n* dimension, where n = |X|.

ID	А	В	С	D	E	F
3256	1	0	1	1	0	0
3257	0	1	1	0	1	0
3258	1	1	1	0	1	0
3259	1	1	0	0	1	1
•••						

Bag of Words

• Let $X = \{A_1, A_2, \dots, A_k\}$ be a finite set of words.

• For a sentence *s*, we define $T(s) = (x_1, x_2, ..., x_k)$ where

 $x_i = 1$ if word A_i appears in s

= 0 o.w.

for i = 1, 2, ..., n

Example

W=(arithmetic, book, compute, paper, suppose, square, symbol, write)

- s₁: Computing is normally done by writing certain symbols on paper.
- s₂: We may suppose this paper is divided into squares like a child's arithmetic book.

 $T(s_1) = (0, 0, 1, 1, 0, 0, 1, 1)$ $T(s_2) = (1, 1, 0, 1, 1, 1, 0, 0)$

Mathematical Definitions

Assuming a finite set of all items

$$X = \{A_1, A_2, ..., A_n\}$$

- A transaction is a pair t = (i, T) of an identifier $i \in \mathbb{N}$ and a finite set of items $T \in X$
- A transaction database *D* is a finite set of transactions in which no pair of transactions have a same identifier, that is,

 $t = (i, T) \in D$ and $s = (j, S) \in D$ imply $i \neq j$.

- A pattern is a finite set of items.
 - Transactions are for training data patterns are rules.

Mathematical Definitions (2)

- For a pattern P and a transaction t = (i, T), we say t satisfies P (or P matches t) iff P ⊂ T.
 Let D(P) = { t | P matches t }.
- The support of P in a transaction database D is defined as supp(P) = |D(P)| / |D|.
 - The support is also called the relative frequency.

Definition of Learning Task

• Assuming a set of items *X*

■ For a given transaction database *D* and a minimal support (threshold) σ s.t. $0 \le \sigma \le 1$, enumerate all patterns P s.t. supp(*P*) ≥ σ .

A Very Simple Example

ID	А	В	С	D	E	F
1	1	0	1	1	0	0
2	0	1	1	0	1	0
3	1	1	1	0	1	0
4	1	1	0	0	1	1

 $supp({A})= supp({B})= supp({C})= supp({E})= 0.75,$ $supp({D})= supp({F})= 0.25$ $supp({A, B})= supp({A, C})= 0.5, supp({A, D})= 0.25,...$

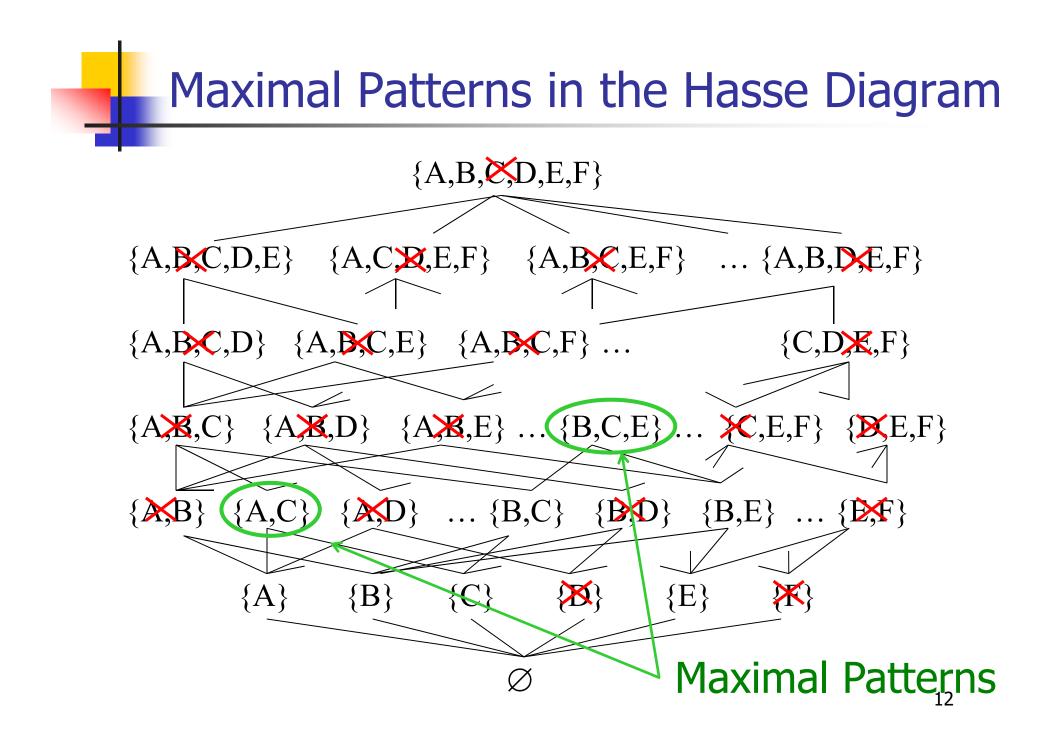
Monotonicity of the Support

Lemma For two patterns P and Q,

 $P \subseteq Q \implies \operatorname{supp}(P) \ge \operatorname{supp}(Q)$

ID	А	В	С	D	Е	F
1	1	0	1	1	0	0
2	0	1	1	0	1	0
3	1	1	1	0	1	0
4	1	1	0	0	1	1

 $supp({A})=0.75 \ge supp({A, B})=0.25$ $supp({B})=0.5\ge supp({A, B})=0.25$ $supp({A})=0.75\ge supp({A, C})=0.5$



FORMAL CONCEPT ANALYSIS

A Simple Example

• Set of all items: $X = \{A, B, C, D, E, F\}$

Transaction ID	Item Sets
•••	
3256	$\{A, C, D\}$
3257	$\{B, C, E\}$
3258	$\{A, B, C, E\}$
3259	$\{A, B, E, F\}$
•••	• • • •

• "Items A and C might be bought together."

Bit-vector Representation

• Every transaction can be represented as a bitvector of *n* dimension, where n = |X|.

ID	А	В	С	D	E	F
3256	1	0	1	1	0	0
3257	0	1	1	0	1	0
3258	1	1	1	0	1	0
3259	1	1	0	0	1	1
•••						

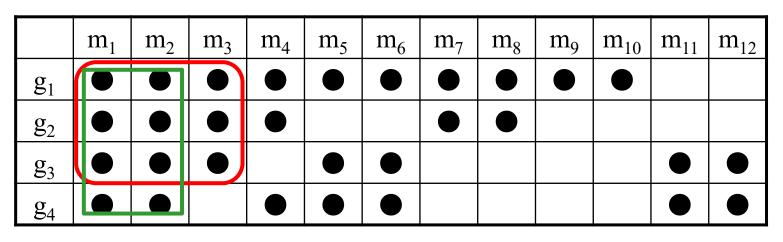
Context Table Representation

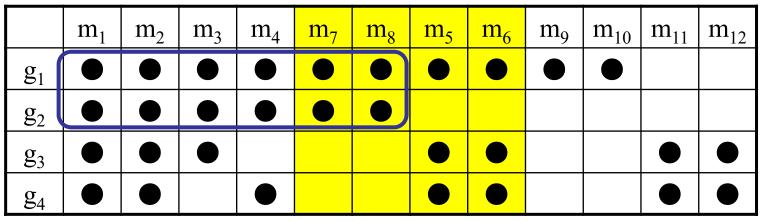
■ Instead of "1", we use ●.

ID	A	В	C	D	E	F
3256						
3257						
3258						
3259						
•••						

Formal Concepts

■ A formal concept is a maximal rectangular filled with ●, without considering the ordering of law and column.





Intuitive Explanation

In the context of item set mining, a formal concept is a pair of a set *A* of transaction and a set *B* of items such that

- every transaction in *A* contains all items in *B*,
- every items in B is contained by all transactions in A,
- for every item *i* which is not in *B*, at least one transaction in *A* does not contain *i*, and
- for every transaction t which is not in A, at least one item is not contained by t.

Mathematical Definition Errors Corrected

- A formal context K=(G, M, I) consists of two sets G(objects, *Gegenstand*) and M (attributes, *Merkmal*) and a binary relation $I \subseteq G \times M$.
- We define two functions $f: 2^G \to 2^M$ and $h: 2^M \to 2^G$ $f(A) = \{ m \in M \mid (g, m) \in I \text{ for all } g \in A \}$ $h(B) = \{ g \in G \mid (g, m) \in I \text{ for all } m \in B \}$
 - The pair (f, h) is called a Glois connection between 2^G and 2^M .
- A formal concept of *K* is a pair C=(A, B) with $A \subseteq G$ and $B \subseteq M$ such that f(A)=B and h(B)=A, i.e.

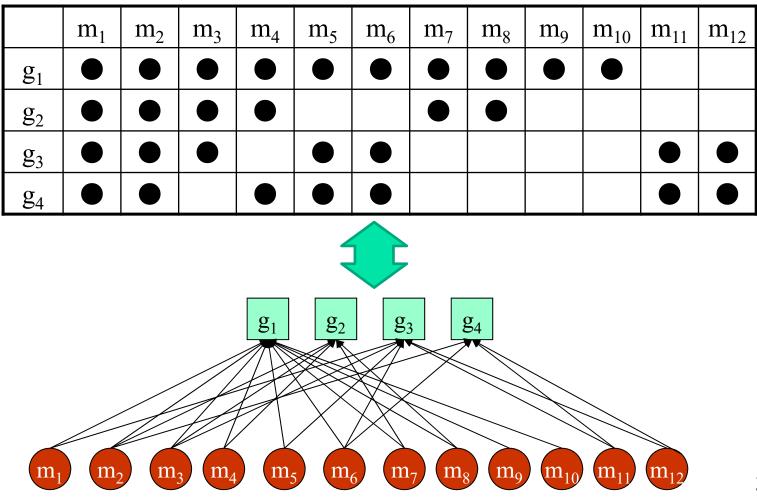
h(f(A)) = A and f(h(B)) = B.

• *A* is called the extent of *C* and *B* is called the intent of *C*.

Bipartite Graph Representation

• Every context table can be represented as a bipartite graph.

• Every formal concept is a represented as a bipartite clique.



Some Propositions

For a context $K=(G, M, I), A, A_1, A_2 \subseteq G$ and $B, B_1, B_2 \subseteq M$,

• $A_1 \subseteq A_2 \Rightarrow f(A_2) \subseteq f(A_1)$ • $B_1 \subseteq B_2 \Rightarrow h(B_2) \subseteq h(B_1)$ • $A \subseteq h(f(A))$ • $B \subseteq f(h(B))$

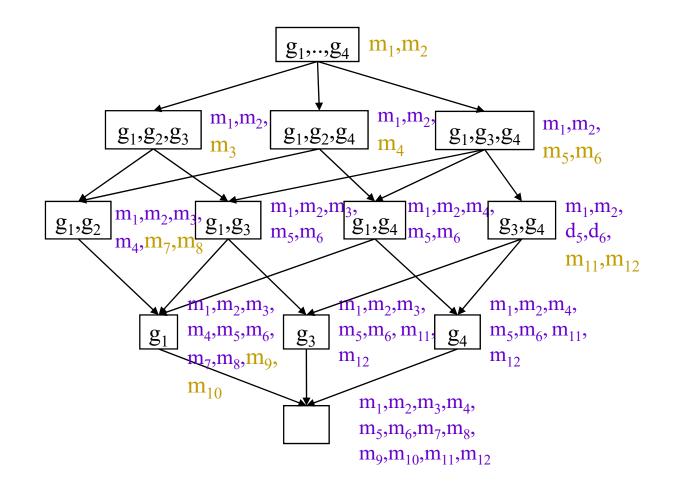
• $A \subseteq h(B) \Leftrightarrow B \subseteq f(A) \Leftrightarrow A \times B \subseteq I$

- $h(f(A_1 \cup A_2)) = h(f((h(f(A_1)) \cup h(f(A_2)))))$
- $f(h(B_1 \cup B_2)) = f(h((f(h(B_1)) \cup f(h(B_2)))))$
- $A_1 \subseteq h(f(A_2) \Rightarrow h(f(A_1) = h(f(A_2)))$ and $h(f(A_1 \cup A) = h(f(A_2 \cup A)))$ • $B_1 \subseteq f(h(B_2) \Rightarrow f(h(B_1) = f(h(B_2)))$ and $f(h(B_1 \cup B) = f(h(B_2 \cup B)))$

For formal concepts $C_1 = (A_1, B_1)$ and $C_2 = (A_2, B_2)$, $A_1 \subseteq A_2 \Leftrightarrow B_2 \subseteq B_1$

Hasse Diagram of FCs

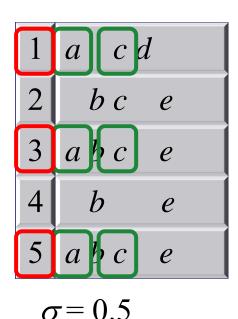
• We can draw another Hasse diagram with all of the formal concepts.



CLOSED PATTERNS

Closed Item Sets [Pasquier et al.]

- For a transaction data, we let *G* is the set of all transaction id and *M* is the set of all items.
- An pattern B is closed iff B = f(h(B)), i.e, (h(B), B) is a formal concept.



Frequent closed pattern:c,ac,be,bceFrequent but not closed pattern: a, bc, \ldots

• For a transaction data, we let *G* is the set of all transaction ids and *M* is the set of all items.

Lemmas

Lemma For a context $K=(G, M, I), A \subseteq G$ and $B \subseteq M$

- $h(f(A)) = \bigcap_{g \in G} \{ f(\{g\}) \mid A \subseteq f(\{g\}) \}$
- $f(h(B)) = \bigcap_{m \in M} \{h(\{m\}) \mid B \subseteq f(\{m\})\}$

Corollary For closed patterns B_2 , if $B_2 \subseteq B_1$ and $B_2 \neq B_1$, then supp $(B_2) > \text{supp}(B_1)$. Corollary For two closed patterns B_1 and B_2 , if $B_2 \subseteq B_1$ and $B_2 \neq B_1$, then supp $(B_2) > \text{supp}(B_1)$.

Lemma [Pasquier et al.] Every pattern B_1 of supp $(B_1) = \sigma$ can be derived from some closed pattern B_2 of supp $(B_2) = \sigma$.

Proposition Every maximally frequent closed pattern is a frequent closed pattern.

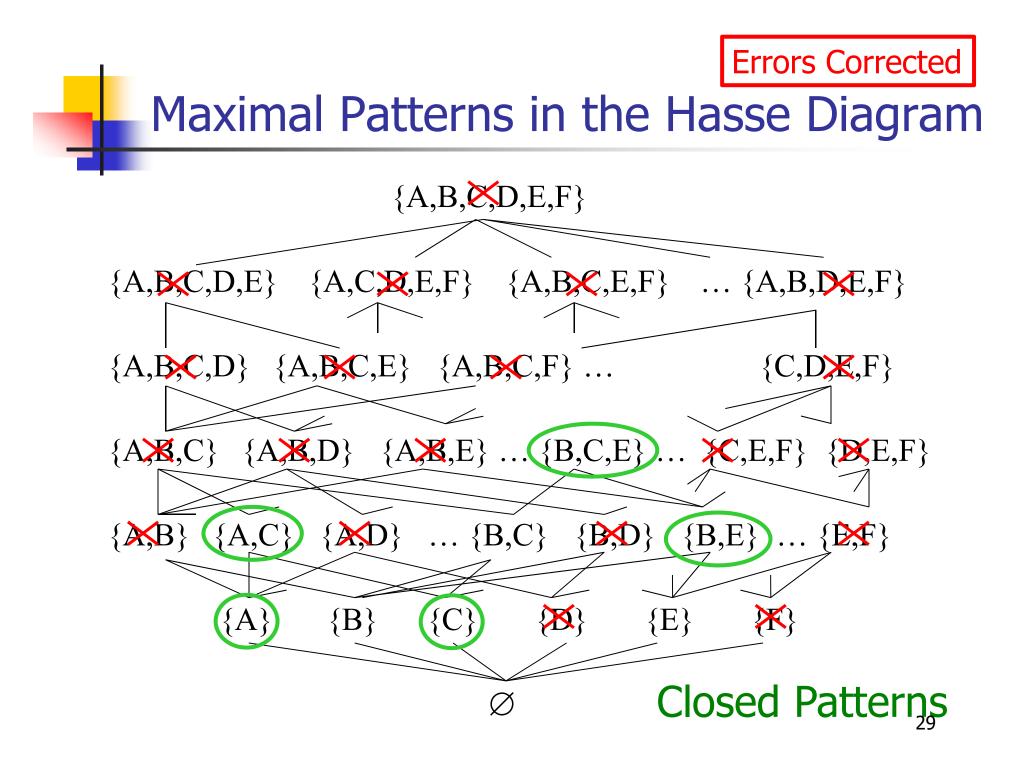
An Example of Run(1)

ID	Α	В	С	D	E	F
1	1	0	1	1	0	0
2	0	1	1	0	1	0
3	1	1	1	0	1	0
4	1	1	0	0	1	1

$$\sigma = 0.5$$

 $C_1 = \{\{A\}, \{B\}, ..., \{F\}\}$ $L_1 = \{\{A\}, \{B\}, \{C\}, \{E\}\}\}$ $C_2 = \{\{A, B\}, \{A, C\}, \}$ $\{A, E\}, \{B, C\},\$ $\{B, E\}, \{C, E\}\}$ $L_2 = \{\{A, B\}, \{A, C\}, \}$ $\{A, E\}, \{B, C\},\$ $\{B, E\}, \{C, E\}\}$ $C_3 = \{\{A,B,C\}, \{A,B,E\}\}$ $\{B,C,E\}\}$

 $L_3 = \{\{A,B,E\},\{B,C,E\}\}$

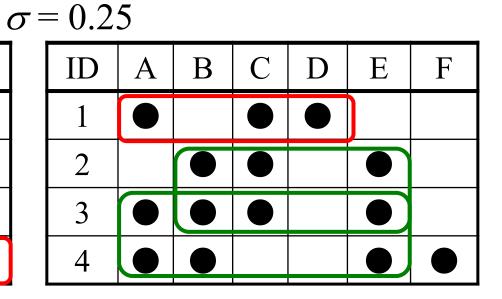


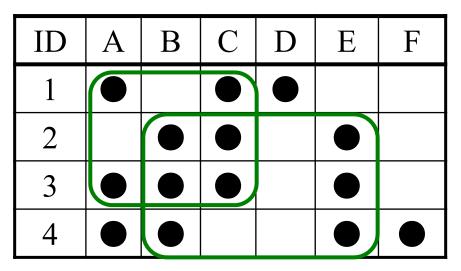
Revised Additional Slide Frequent Closed ItemSets $\sigma = 0.5$ E F B C ID D A 1 2 3 4 C F ID Β E F ID C E A D A Β D 1 1 2 2 3 3 4 4

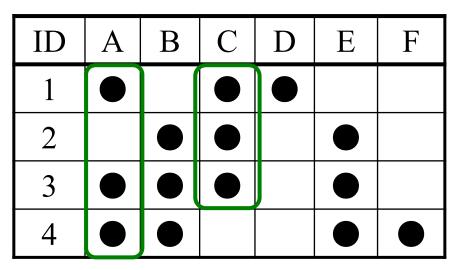
Revised Additional Slide

Frequent Closed ItemSets

ID	А	В	C	D	E	F
1						
2						
3						
4						







Available Algorithm

Takeaki Uno and Tatsuya Asai, Hiroaki Arimura and Yuzo Uchida LCM: An Efficient Algorithm for Enumerating Frequent Closed Item, IEEE ICDM'04 Workshop FIMI'03