Computational Learning Theory
Formal Concept Analysis and

!'_ Frequent Item Set Mining

Akihiro Yamamoto LlUA& =18

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp




i Contents

= [tem Set Mining and the A Priori Algorithm
= Formal Concept Analysis
= Closed Patterns




ITEM SET MINING



i A Simple Example

s Setof all items: X={A,B,C, D, E, F}

Transaction ID [tem Sets
3256 {A, C, D}
3257 {B, C, E}
3258 {A, B, C, E}
3259 {A,B,E, F}

= “Items A and C might be bought together.”



i Bit-vector Representation

= Every transaction can be represented as a bit-
vector of n dimension, where n=| X |.

ID A B C D E F
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Bag of Words

s Let X={A, A,,..., A) be a finite set of words.
= For a sentence S, we define T(S) = (X;, X,,..., X,) where
X;= 11f word A, appears in S
= 0 o.w.
fori=1,2,...,n
Example
W =(arithmetic, book, compute, paper, suppose, square, symbol, write)

s;: Computing 1s normally done by writing certain symbols
on paper.

s,: We may suppose this paper 1s divided into squares like a
child's arithmetic book.

T(s;)=(0,0,1,1,0,0, 1, 1)
T(s,)=(1,1,0,1,1, 1,0, 0) :




i Mathematical Definitions

s Assuming a finite set of all items
X={AL A, ....A }

= A transaction is a pairt=(I, T ) of an identifier
| €N and a finite set of items T € X

» A transaction database D 1s a finite set of
transactions in which no pair of transactions have
a same 1dentifier, that 1s,

t=(0,T)eDands=(,S) € Dimply 1 #].
= A pattern 1s a finite set of 1tems.

= Transactions are for training data patterns are rules.
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i Mathematical Definitions (2)

= For a pattern P and a transactiont= (I, T), we
say t satisfies P (or P matches t) iff P — T.

s Let D(P)= {t| P matchest }.

= The support of P 1n a transaction database D 1s
defined as supp(P)=|D(P)|/|D]|.

= The support is also called the relative frequency.



i Definition of Learning Task

= Assuming a set of items X

= For a given transaction database D and
a minimal support (threshold) o s.t. 0< o<1,
enumerate all patterns P s.t. supp(P) = o.




i A Very Simple Example

ID A B C D E F
1 1 0 1 1 0 0
2 0 ‘ ‘ 0 ‘ 0
3 1 1 0 0
4 1 0 0 1

supp({A})= supp({B} )= supp({C})= supp({E})=0.75,
supp({D})= supp({F})= 0.25
supp({A, B})=supp({A, C})=0.5, supp({A, D})=0.25,...
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i Monotonicity of the Support

For two patterns P and Q,
P 2Q = supp(P) = supp(Q)

ID A B C D E F
1 1 0 1 1 0 0
2 0 1 1 0 1 0
3 1 1 1 0 1 0
4 1 1 0 0 1 1

supp({A})=0.75 = supp({A, B} )=0.25
supp({B})=0.5= supp({A, B} )=0.25
supp({A})=0.75 = supp({A, C} )=0.5
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i Maximal Patterns in the Hasse Diagram

{A,B,&D,E,F}

%N

{A,B<SC.D.E} {A,CR,EF} {ABXEF} ... {ABD¢gEF}

ABCD) {ABCE} {ABCFE) ... {C.DEF}

(AR,C} {ABD} {ARE}. (B.CE)D.. ¥CEF} (KEF)

e~ =7
(B} (AC) (XD} .. {BC} {BD} (BE} ... {(BF)

N~
(A} (B} ¢ B\ E X

k’
% Maximal Patterns



FORMAL CONCEPT ANALYSIS
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i A Simple Example

s Setof all items: X={A,B,C, D, E, F}

Transaction ID [tem Sets
3256 {A, C, D}
3257 {B, C, E}
3258 {A, B, C, E}
3259 {A,B,E, F}

= “Items A and C might be bought together.”



i Bit-vector Representation

= Every transaction can be represented as a bit-
vector of n dimension, where n=| X |.

ID A B C D E F

3256
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i Context Table Representation

= Instead of “1”, we use @.

ID A B C D E F

3256 | @
3257
3258
3259




i Formal Concepts

= A formal concept is a maximal rectangular filled with @,
without considering the ordering of law and column.

m; | m, | my | My | Mg | Mg | My; | Mg | My | My, My [ 1My,
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i Intuitive Explanation

In the context of item set mining, a formal concept 1s a
pair of a set A of transaction and a set B of items such
that

= every transaction in A contains all items in B,
= every items 1n B 1s contained by all transactions in A,

= for every item | which is not in B, at least one
transaction in A does not contain I, and

» for every transaction t which is not in A, at least one
item 1s not contained by t.
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i Mathematlcal DeﬁnitiO[LlErrOrS Corrected

= A formal context K=(G, M, |) consists of two sets G
(objects, Gegenstand) and M (attributes, Merkmal) and a
binary relation | < G X M.

s We define two functions f:2¢ -5 2M and h : 2M — 26
f(A)={meM | (g, m) e | for all geA }
h(B)={geG | (g, m) e | for all meB }

= The pair (f, h) is called a Glois connection between 2 and 2M.

= A formal concept of K is a pair C=(A, B) with AcG and
BcM such that f(A)=B and h(B) = A, i.c.
h(f(A))=A and f(h(B))=B.
= Ais called the extent of C and B i1s called the intent of C.
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i Bipartite Graph Representation

= Every context table can be represented as a bipartite graph.
= Every formal concept is a represented as a bipartite clique.

m, m, | ms

Mg
O & 6 &6 & & o
@ ® O

my; | Mg | My | My [ My | My

g1
g2
g3
84

® 0 e :

® 00 e -
( BN BN AN
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i Some Propositions

For a context K=(G, M, I), A, A, A, cGandB, B,, B, 2 M,
= AicA = 1(A) cf(A) = B, B, =h(B,) ch(B))
= Ach(f(A)) = Bcf(h(B))

s AchB)<Bcf(A)< AXBcl

= h(f(A;UA,)) = h(Tf((h(f(A)))Uh(f(A)))))
= f(h(B,UB,)) = f(h((f(h(B,))f(h(B,))))
= A, < h(f(A,)= h(f(A))=h(f(A,))
and h(f(A, VA)=h(f(A,LA))
= B, c f(h(B,)= f(h(B,)=t(h(B,))
and f(h(B,uB)=f(h(B,uB)) 21




i Some Propositions

For formal concepts C,=(A,, B,) and C,=(A,, B,),
A cA & B,cB,
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i Hasse Diagram of FCs

= We can draw another Hasse diagram with all of the
formal concepts.

1584 m,,m,

81-82:83 | 1, £1,82-84 m, £1-83-84




CLOSED PATTERNS
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i Closed Item Sets [Pasquier et al.]

= For a transaction data, we let G 1s the set of all
transaction 1d and M 1s the set of all items.

= An pattern B is closed iff B =f(h(B)), i.e, (n(B), B) is a
formal concept.

T@ _C}j Frequent closed pattern c,|ac) be, bce
2

bc e Frequent but not closed pattern: @, bc, ...

3la c] e
al b e = For a transaction data, we let G 1s the
set of all transaction 1ds and M 1s the

Slapc| e

o=0.5

set of all items.
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Revised ‘
i Lemmas

Lemma For a context K=(G, M, I), A G and Bc M

= N(I(A)) = Noes {1(195) [ A S 1({9})}
= 1(h(B)) = Amew {h({m}) | B < T({m})]

Corollary For closed patterns B,, 1f B, € B, and B, # B, ,
then supp(B,) > supp(B,).

Corollary For two closed patterns B, and B,, if B, = B, and
B, # B, , then supp(B,) > supp(B,).

Lemma [Pasquier et al.] Every pattern B, of supp(B,) =c

can be derived from some closed pattern B, of supp(B,)= c.
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i Proposition

Additional Slide

Proposition Every maximally frequent closed pattern 1s a

frequent closed pattern.
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i An Example of Run(1)

ID | A| B |C|D|E F

| 1 |0 |1 1 0 0

2 0| 1 1 | O | 0

3 | | 1 | 0O | 0

4 | 1 0] O | |
o=0.5

Cl - {{A}n {B}a R {F}}

L, = HALBCHIES;

C2 - {{Aa B}a {An C}a
A, EfL 1B, G,
B, Ej, {C, E};}

L2 — {{Aa B},{A, C}a
A, Ef, 1B, G,
B, E}, {C, Ej;

C; = {{A,B,C}, {A,B,E}
{B,C,E}}

L, = {{A,B,E},{B,C,E}}



Errors Corrected

i Maximal Patterns in the Hasse Diagram

{A,B,&D,E,F}

%N

{A,B<SC.D.E} {A,CR,EF} {ABXEF} ... {ABD¢gEF}

ABCD) {ABCE} {ABCFE) ... {C.DEF}

(AR,C} {ABD} {ARE}. (B.CE)D.. ¥CEF} (KEF)
=7 ]
(xB) ({AC) (D} ... {BC} {BD} ({BE})... {BF}

—

e
{A B (B K

% Closed Patterns




Revised Additional Slide

0.5

sed ItemSets

O

i Frequent Clo
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i Available Algorithm

Takeaki Uno and Tatsuya Asai, Hiroaki Arimura
and Yuzo Uchida LCM: An Efficient Algorithm
for Enumerating Frequent Closed Item, IEEE
ICDM'04 Workshop FIMI'03
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