
Computational Learning Theory
Learning Finite State Automata

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Machine Leaning from
String Data

2

Alphabets and Stings
 : a finite set of symbols and called an alphabet
 : the set of all finite strings (sequences) consisting of

the symbols in
 An empty string is denoted by .
 {}
 The size of a string w, denoted by | w |, is the total number of

symbols occurring in w.
Examples
 ab
 abaaabbabb aaaaab

aaaaabab
 ATCG
 ATCGAAAGTAAAA

3

Question
 Assume that we have provided

C : a finite set of positive examples, and
D : a finite set of negative examples
such that C D = .

 Develop a computer program to find a rule
which accepts all positive examples and rejects
all negative examples.

4

Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 It could hold that every string in C1 starts with a and
end with b.

Example 2
C2 = {ba bababa bababababababababa
D2 = {a bbbbbabbbaaaaba babbb

 It might hold that every string in C2 is made of some
repetition of ba.

5

Examples
Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D3 ={a bbbbbabbbaaaaba babbb

 Every string in C3 consists of two strings: The first
string consists only of a’s, and the second consists of
the same number of b’s.

Example 4
C4 = {aa abaabaaaaaaaabaaababab
D4 = {a bbbbbabbbbbbbbba babbb

 In every string in C4 has more than two a’s.
6

The First Problem
 What is the grammar and vocabulary with which

we represent the rule to distinguish C and D?
 In the linear classification case, the rule to be found

is represented in the form of (w, x) + c s.t.
x C (w, x) + c 0
x D (w, x) + c 0

 The region including C is
represented with an
inequation

(w, x) + c 0
7

Solutions to the Problem
 We adopt some representation method with which

we represent a subset of which includes C.
 Since the rule found by some learning mechanism is

expected to be “general”, the set should be sufficiently
large.
Rules should not overfit the examples.

 A rule which represents a rule is sometimes called a
predicate.

8

Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 The rule which is output by a learning machine
would represent a set

L1 = {ab aababb aaabaabbabab abbb
aaaab aaabb abaab abbbb
aaaabbbb

9

Examples
Example 3
C2 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D2 ={a bbbbbabbbaaaaba babbb

 You may imagine that the rule which is output by
a learning machine would represent a set

L2 = {ab aabbaaabbbaaaabbbb aaaaabbbbb
aaaaaabbbbbb

10

Formal Languages
 Every subset of is called a formal language.
Example

ab abaaabbabb aaaaab
L1 aababbaaabaabbabababbb
L2 abaabbaaabbbaaaabbbb

L1 L2

aabb
aab abb

aaab abab

ab

abbb

aaabbb
aaaabbbb

ba

abaaa

baa

a b

11

Learning by Enumerating FA

12

Learning Problems
 Find an FA which accepts the strings in C and

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb

13

Formulation of Learning FA
 Formulation of Learning

argminMFA (x Data Loss(M, x) + P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with
a sign such that s = + if w C and s = if w D,

0 if x = <w, + > and w L(M)
Loss(M, x) = or x = <w, > and w L(fM),

otherwise,
P(M) : the number of states in M

14

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton.
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn L(k)) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk

 With which M’ should we replace ?

 Assume we have a method to generate a new
automaton.

15

Simple Strategy of Learning

 With referring the existence of minimum FA, we can
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small
to large according to their sizes.

16

Representation of Finite State Automata

 Mathematically, a finite state automaton is represented
in the form M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S× S is a transition function

represented as a transition table,
q0 S is an initial state,
F S is a set of final states.

F a1 … an

q0

…

qm

17

Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 q0 q0

L(M0) = L(M0) =

18

Generation by Enumeration
 We can make an infinite but effective

enumeration of all automata, because
every automaton can be represented
as a transition table.

 This means that we can have an infinite
sequence of automata
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced
with M’ = Mi+1.

F a1 … an

q0

…

qm

19

Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

20

Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…

21

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let k = 0
forever

let k’ = k
for n = 1,2,…, N,

if (xn C and xn L(k’)) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk

Assume a procedure of enumerating all FA so that
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0) P(M1) P(M2) … P(Mi) …

22

Some Properties of the Algorithm

 The algorithm always terminates because
for any pair of C and D (C D =
there exists a finite state automaton M such that
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If the enumeration is made so that “smaller automata
appear earlier”, the algorithm returns the smallest
automaton M such that

L(M) C and L(M) D =

23

Note 1
 There might be several automata consistent with

given C and D.
 For any finite set C , we can easily construct

a finite state automaton which accepts only the
strings in C, and rejects all strings not contained
in C.
 The FA is called a prefix tree automaton.

24

Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b

25

Prefixes of a String
Definition A string u is a prefix of another string s

There exists a string v such that s = uv.
For a set S , we let

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab,
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}.

26

Prefix Tree Automata
Definition A prefix tree automaton of a finite set S
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where

QP(S) = { qs | s P(S) },
qs, c) = qsc if sP(S) and sc P(S),

QS = { qs | s S }

aqab qabaqaq
bas = aba

27

Note
 The automaton does not satisfy the mathematical

definition because, for example, no transition from q0 is
defined for the symbol b.
 This means that is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special
state q (called a dead state) and letting every missing
value of be q.

 Under assuming this recover, we
modify the definition.

q

a, b

28

Finite state automata (3)
 A finite state automata is defined as

M = (, Q, , q0, F)
where

Q is a set of states
 : Q× Q is a partial transition function

represented as a transition table
q0 Q is an initial state
F Q is a set of final state

29

Is the automaton pleasant?
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C.
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general

guesses from examples.
 The prefix automaton tree overgeneralize the set D of negative

examples.

30

Note 2
 There is a minimum one in the sense that the number of

states in it is minimum.
 Unfortunately it is proved that the problem of finding a

minimum automaton consistent with given C and D is
NP-hard.
 The activity of a learning algorithm should not be evaluated

(justified) only on the viewpoint of optimization.
 Even though it were not ensured that the algorithm returns the

best solution, the algorithm could work as “learning”.

31

Generalization by Merging
States

32

Generalization by Merging States
 The prefix tree T can be transformed into a more

general automaton by merging several states into
one states.

33

Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b

34

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a

35

Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general
automaton, and
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the
second merge as far as possible.

c

c

36

Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is
a collection ={B1, B2,…, Bn} of subsets of Q satisfying
1. every Bi is not empty,
2. Bi Bj = for every pair of i and j such that i j,
3. B1 B2 Bn = .

Every Bi is called a bock of .
 A block B = {q1, q2,…, qm } represents a state obtained

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.
To merge two blocks Bi and Bj means to revise to
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.

37

Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, ,
q0, F) is consistent

for every block Bi , every pair p, q Bi and
every symbol c
if both (p, c) and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c) Bj .

c

cp

q

Bi Bj

38

Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is
consistent we can define a partial function

’ : ×
and also an automaton M’ = (, , ’, B0, F’) with

F’ = {Bi | some q Bi is in F }.
The automaton is denoted M/ .

39

RPNI Algorithm[Oncina and Gracia92]
Regular Positive Negative Inference (PRNI) Algorithm
Inputs : C : a finite set of positive examples

D : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi Bi and qsj Bj such that Bi Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 40

How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn]

of P(C).
 We had better use some order < and make the list so

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b < ab < ba < abb < bab

41

Example: Merging States
C = {abb, bab}, D = {ab}

aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab,
ba, abb,
bab 42

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a

43

Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]

aaa

bbb b bb

a
aaa

bbb

a a

aaa

b
bb b bb

aa a

aaa
bbb

aaa

bbb b
a

a a

a

b
b b

a

a

44

Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]

aaa

bbb b bb

a
aaa

bbb

a a

aaa

b
bb b bb

aa a

aaa
bbb

aaa

a, b
bb b

a
a a

a

b b

a

b

45

Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]

aaa

bbb b bb

a
aaa

bbb

a a

a

b
bb b bb

a

a

b b

a

a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b

46

Effect of the Order (4)
 It is proved that the length-wise lexico-graphic

order is better than its inverse.

47

Finding minimum FA
 Finding a minimum FA consistent with a finite

amount of positive and negative examples is
NP-hard.

 The automata found by RPNI is not always
minimal, but outputs in polynomial time

card(C)2 card(D).

48

