Computational Learning Theory Learning Finite State Automata

#### Akihiro Yamamoto 山本 章博

http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/ akihiro@i.kyoto-u.ac.jp Machine Leaning from String Data

## Alphabets and Stings

- $\Sigma$  : a finite set of symbols and called an alphabet
- Σ\* : the set of all finite strings (sequences) consisting of the symbols in Σ.
  - An empty string is denoted by ε.
  - $\Sigma^+ = \Sigma^* \{\varepsilon\}$
  - The size of a string w, denoted by | w |, is the total number of symbols occurring in w.

Examples

# Question

• Assume that we have provided

- $C \subset \Sigma^*$ : a finite set of positive examples, and  $D \subset \Sigma^*$ : a finite set of negative examples such that  $C \cap D = \emptyset$ .
- Develop a computer program to find a rule which accepts all positive examples and rejects all negative examples.

# Examples

Example 1

- $C_1 = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$
- $D_1 = \{a, b, bbbb, abba, baaaaba, babb\}$ 
  - It could hold that every string in C<sub>1</sub> starts with a and end with b.

Example 2

- $C_2 = \{$ ba, bababa, babababa, bababababa $\}$
- $D_2 = \{a, b, bbbb, abb, baaaaba, babbb\}$ 
  - It might hold that every string in C<sub>2</sub> is made of some repetition of ba.

# Examples

### Example 3

- $C_3 = \{aaabbb, ab, aaaabbbb, aaaaabbbbb, aabb\}$
- $D_3 = \{a, b, bbbb, abb, baaaaba, babbb\}$ 
  - Every string in C<sub>3</sub> consists of two strings: The first string consists only of a's, and the second consists of the same number of b's.

### Example 4

- $C_4 = \{aa, abaaba, aaaaaaaa, baaab, abab\}$
- $D_4 = \{a, b, bbbb, abb, bbbbbbba, babbb\}$ 
  - In every string in  $C_4$  has more than two a's.

# The First Problem

- What is the grammar and vocabulary with which we represent the rule to distinguish *C* and *D*?
  - In the linear classification case, the rule to be found is represented in the form of (w, x) + c s.t.

 $\mathbf{x} \in C \Rightarrow (\mathbf{w}, \mathbf{x}) + c \ge 0$  $\mathbf{x} \in D \Rightarrow (\mathbf{w}, \mathbf{x}) + c \le 0$ 



• The region including *C* is represented with an inequation

 $(\boldsymbol{w},\boldsymbol{x})+c\geq 0$ 

# Solutions to the Problem

- We adopt some representation method with which we represent a subset of Σ\* which includes C.
  - Since the rule found by some learning mechanism is expected to be "general", the set should be sufficiently large.

Rules should not overfit the examples.

A rule which represents a rule is sometimes called a predicate.



Example 1

- $C_1 = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$
- $D_1 = \{a, b, bbbb, abba, baaaaba, babb\}$
- The rule which is output by a learning machine would represent a set
- $L_1 = \{ab, aab, abb, aaab, aabb, abab, abbb, aaaab, aaaab, aaabb, ..., abaab, ..., abbbb, ..., aaaabbbb, ...\}$



#### Example 3

 $C_2 = \{aaabbb, ab, aaaabbbb, aaaaabbbbb, aabb<math>\}$  $D_2 = \{a, b, bbbb, abb, baaaaba, babbb\}$ 

You may imagine that the rule which is output by a learning machine would represent a set
 L<sub>2</sub> = {ab, aabb, aaabbb, aaaabbbbb, aaaabbbbbb, aaaaabbbbbb, aaaaabbbbbb,...}

### Formal Languages

Every subset of Σ\* is called a formal language.
 Example

 $\Sigma = \{a, b\}, \Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab,... \}$  $L_1 = \{aab, abb, aaab, aabb, abab, abbb,... \}$  $L_2 = \{ab, aabb, aaabbb, aaaabbb, aaaabbbb,... \}$ 





# Learning by Enumerating FA

# Learning Problems

- Find an FA which accepts the strings in *C* and rejects the strings in *D*.
  - $C = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$
  - $D = \{a, b, bbbb, abba, baaaaba, babb\}$

### Formulation of Learning FA

• Formulation of Learning  $\operatorname{argmin}_{M \in \mathsf{FA}} (\Sigma_{x \in Data} \operatorname{Loss}(M, x) + \lambda P(M))$ 

where FA : the set of all finite state automata,

*Data* : a finite set of pairs  $x = \langle w, s \rangle$  of a string with a sign such that s = + if  $w \in C$  and s = - if  $w \in D$ ,

$$Loss(M, \mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} = \langle w, + \rangle \text{ and } w \in L(M) \\ \text{or } \mathbf{x} = \langle w, - \rangle \text{ and } w \notin L(fM), \\ \infty, \text{ otherwise,} \end{cases}$$

P(M): the number of states in M

### A Simple Generate-and-Test Algorithm

# Assume we have a method to generate a new automaton.

Let the input data  $x_1, x_2, ..., x_N$ Initialize M as some automaton. for k = 1, 2, ...  $M_k = M_{k-1}$ for n = 1, 2, ..., N, if  $(x_n \in C \text{ and } x_n \notin L(M_k))$  or  $(x_n \in D \text{ and } x_n \in L(M_k))$ replace  $M_k$  with another Mif  $M_k = M_{k-1}$ terminate and output  $M_k$ 

#### • With which *M*' should we replace *M*?

## Simple Strategy of Learning

 With referring the existence of minimum FA, we can easily imagine a simple strategy of learning: Generate all FA, and enumerate them from small to large according to their sizes.

### **Representation of Finite State Automata**

 Mathematically, a finite state automaton is represented in the form *M*=(Σ, S, δ, s<sub>0</sub>, *F*)

where

- $\Sigma$  is the alphabet,
- S is a set of states,
- $\delta: S \times \Sigma \to S \text{ is a transition function}$ represented as a transition table,
- $q_0 \in S$  is an initial state,
- $F \subset S$  is a set of final states.

|         | F | $a_1$ | ••• | $a_n$ |
|---------|---|-------|-----|-------|
| $ q_0 $ |   |       |     |       |
| •••     |   |       |     |       |
| $q_m$   |   |       |     |       |

## Finite Automata of One State





|       | F | а     | b     |
|-------|---|-------|-------|
| $q_0$ |   | $q_0$ | $q_0$ |

$$L(M_0) = \emptyset$$

 $\begin{array}{|c|c|c|c|}\hline F & \mathsf{a} & \mathsf{b} \\ \hline q_0 & \sqrt{} & q_0 & q_0 \end{array}$ 

$$L(M_0) = \Sigma^*$$

## **Generation by Enumeration**

- We can make an infinite but effective enumeration of all automata, because every automaton can be represented as a transition table.
  - This means that we can have an infinite sequence of automata

 $M_1, M_2, \ldots$ 

any automaton *M* appears as  $M_i = M$ .



• In the algorithm  $M = M_i$  is just replaced with  $M' = M_{i+1}$ .

### Enumeration of Automata(1)





|       | F | а     | b     |
|-------|---|-------|-------|
| $q_0$ |   | $q_0$ | $q_0$ |

|       | F | а     | b     |
|-------|---|-------|-------|
| $q_0$ | V | $q_0$ | $q_0$ |



### A Simple Generate-and-Test Algorithm

Assume a procedure of enumerating all FA so that the enumeration  $M_0, M_1, M_2, \dots, M_i, \dots$  satisfies  $P(M_0) \le P(M_1) \le P(M_2) \le \dots \le P(M_i) \le \dots$ 

Let the input data  $x_1, x_2, ..., x_N$ Initialize  $M = M_0$  as an automaton consisting of one state let k = 0

#### forever

let 
$$k' = k$$
  
for  $n = 1, 2, ..., N$ ,  
if  $(x_n \in C \text{ and } x_n \notin L(M_{k'}))$  or  $(x_n \in D \text{ and } x_n \in L(M_{k'}))$   
replace  $k$  with  $k + 1$   
if  $k' = k$   
terminate and output  $M_k$ 

### Some Properties of the Algorithm

- The algorithm always terminates because for any pair of *C* and *D* (*C* ∩ *D* = Ø), there exists a finite state automaton *M* such that *L*(*M*) = *C* and *L*(*M*) ∩ *D* = Ø, and this *M* appears in the enumeration as *M<sub>i</sub>* = *M*.
- If the enumeration is made so that "smaller automata appear earlier", the algorithm returns the smallest automaton *M* such that

 $L(M) \subset C$  and  $L(M) \cap D = \emptyset$ .

# Note 1

- There might be several automata consistent with given *C* and *D*.
- For any finite set  $C \subset \Sigma^*$ , we can easily construct a finite state automaton which accepts only the strings in *C*, and rejects all strings not contained in *C*.
  - The FA is called a prefix tree automaton.

## Example

 $C_1 = \{ab, aab, abaab, aaab, aaaabbbb, abab\}$  $D_1 = \{a, b, bbbb, abba, baaaaba, babb\}$ 



## Prefixes of a String

Definition A string  $u \in \Sigma^*$  is a prefix of another string  $s \in \Sigma^*$   $\Leftrightarrow$  There exists a string  $v \in \Sigma^*$  such that s = uv. For a set  $S \subseteq \Sigma^*$ , we let  $P(S) = \{ u \in \Sigma^* \mid u \text{ is a prefix of some } s \text{ in } S \}.$ 

Example The prefixes of aab are  $\varepsilon$ , a, aa, and aab, the prefixes of ab are  $\varepsilon$ , a, and ab, and so we have  $P(\{ab, aab\}) = \{\varepsilon, a, aa, ab, aab\}.$ 

### Prefix Tree Automata

Definition A prefix tree automaton of a finite set  $S \subseteq \Sigma^*$  is defined as

$$M = (\Sigma, Q = Q_{P(S)}, \delta, q_0 = q_{\varepsilon}, F = Q_S)$$
  
where

$$Q_{P(S)} = \{ q_s \mid s \in P(S) \},\$$
  
$$\delta(q_s, c) = q_{sc} \quad \text{if } s \in P(S) \text{ and } sc \in P(S),\$$
  
$$Q_S = \{ q_s \mid s \in S \}$$

$$s = aba$$
  $q_{\epsilon}$   $a$   $q_{a}$   $b$   $q_{ab}$   $a$   $q_{aba}$ 

# Note

- The automaton does not satisfy the mathematical definition because, for example, no transition from q<sub>0</sub> is defined for the symbol b.
  - This means that  $\delta$  is not a mathematical function, but a partial function.
- This fault can be easily recovered by adding a special state q<sub>∞</sub> (called a dead state) and letting every missing value of δ be q<sub>∞</sub>.
- Under assuming this recover, we modify the definition.



## Finite state automata (3)

• A finite state automata is defined as

$$M = (\Sigma, Q, \delta, q_0, F)$$

where

Q is a set of states  $\delta: Q \times \Sigma \rightarrow Q$  is a partial transition function represented as a transition table  $q_0 \in Q$  is an initial state  $F \subset Q$  is a set of final state

# Is the automaton pleasant?

- The prefix tree automaton *T* overfits *C*.
  - It accepts no strings which is not in *C*.
  - It must be revised if new examples are added to *C*.
    - It is a natural to assume that positive examples and negative are added more experiments or observations are made.
- The prefix tree automaton *T* does not generalize *C*.
  - Intuitively learning should be activity of making general guesses from examples.
  - The prefix automaton tree overgeneralize the set *D* of negative examples.

# Note 2

- There is a minimum one in the sense that the number of states in it is minimum.
- Unfortunately it is proved that the problem of finding a minimum automaton consistent with given C and D is NP-hard.
  - The activity of a learning algorithm should not be evaluated (justified) only on the viewpoint of optimization.
  - Even though it were not ensured that the algorithm returns the best solution, the algorithm could work as "learning".



## Generalization by Merging States

### **Generalization by Merging States**

The prefix tree T can be transformed into a more general automaton by merging several states into one states.





# Two Types of Merge

- We have to treat two types of merge:
  - 1. Merging two states to generate a more general automaton, and
  - 2. Merging two states to keep the automaton deterministic

(in other words, consistent).



Strategy: first apply the first merge, and then try the second merge as far as possible.

# **Partitions and Blocks**

Definition A partition of a set *Q* of states of a automaton, is a collection  $\pi = \{B_1, B_2, ..., B_n\}$  of subsets of *Q* satisfying

- 1. every  $B_i$  is not empty,
- 2.  $B_i \cap B_j = \emptyset$  for every pair of *i* and *j* such that  $i \neq j$ ,
- 3.  $B_1 \cup B_2 \cup \ldots \cup B_n = \emptyset$ .

Every  $B_i$  is called a bock of  $\pi$ .

 A block B = {q<sub>1</sub>, q<sub>2</sub>,..., q<sub>m</sub>} represents a state obtained by merging the states q<sub>1</sub>, q<sub>2</sub>,..., q<sub>m</sub> into one.

Definition Let  $\pi = \{B_1, B_2, ..., B_n\}$  be a partition of states. To merge two blocks  $B_i$  and  $B_j$  means to revise  $\pi$  to  $\pi_{(i,j)} = \{B_1, B_2, ..., B_n\} - \{B_i, B_j\} \cup \{B_i \cup B_j\}.$ 

# **Consistent Partition**

Definition A partition  $\pi = \{B_1, B_2, \dots, B_n\}$  for  $M = (\Sigma, Q, \delta, q_0, F)$  is consistent

 $\Leftrightarrow$ 

for every block  $B_i$ , every pair  $p, q \in B_i$  and every symbol  $c \in \Sigma$ ,

if both  $\delta(p, c)$  and  $\delta(q, c)$  are defined, then

there is a block  $B_j$  such that both  $\delta(p, c)$  and  $\delta(q, c) \in B_j$ .



## **Partitioned Automata**

If a partition  $\pi = \{B_1, B_2, ..., B_n\}$  for  $M = (\Sigma, Q, \delta, q_0, F)$  is consistent we can define a partial function

$$\delta': \pi \times \Sigma \to \pi$$

and also an automaton  $M' = (\Sigma, \pi, \delta', B_0, F')$  with

$$F' = \{B_i \mid \text{some } q \in B_i \text{ is in } F \}.$$

The automaton is denoted  $M/\pi$ .

### RPNI Algorithm[Oncina and Gracia92]

**Regular Positive Negative Inference (PRNI) Algorithm** Inputs :  $C \subset \Sigma^*$  : a finite set of positive examples  $D \subset \Sigma^*$ : a finite set of negative examples Method : Make a list  $[s_1, s_2, ..., s_n]$  of elements in P(C) Make the prefix automaton *M* of *C*; k = 0;  $\pi_0 = \{\{q_s\} | s \in P(C)\}$ for i = 2 to nfor j = 1 to i - 1if  $q_{si} \in B_i$  and  $q_{si} \in B_i$  such that  $B_i \neq B_i$ let  $\pi$ ' be the partition obtained by merging  $B_i$  and  $B_i$ while  $\pi$ ' is not consistent Choose a pair  $q' \in B'$  and  $q'' \in B''$  violating the consistency  $\pi' :=$  the partition obtained by merging *B*' and *B*'' in  $\pi'$ if  $M/\pi$ ' rejects all strings in D  $\pi_k := \pi'; k := k+1$ Output  $M/\pi_k$ 40

## How to make the list of examples

- We have to fix a method of making the list  $[s_1, s_2, ..., s_n]$  of P(C).
- We had better use some order < and make the list so that</li>

 $s_1 < s_2 < \ldots < s_n$ 

• We use the length-wise lexico-graphic order:

s < t if |s| < |t| or

|s| = |t| and s is earlier than t in the lexicographic order

Example a < b < ab < ba < abb < bab





## Effect of the Order (1)

•  $C = \{a, b, aa, bb, aaa, bbb\}$   $D = \{\varepsilon, ab, ba, aab, aba, abb, baa, bab, bba\}$ [bbb, aaa, bb, aa, b, a]



# Effect of the Order (2)

• 
$$C = \{a, b, aa, bb, aaa, bbb\}$$
  
 $D = \{\varepsilon, ab, ba\}$   
[bbb, aaa, bb, aa, b, a]





# Effect of the Order (4)

It is proved that the length-wise lexico-graphic order is better than its inverse.

# Finding minimum FA

- Finding a minimum FA consistent with a finite amount of positive and negative examples is NP-hard.
- The automata found by RPNI is not always minimal, but outputs in polynomial time card(C)<sup>2</sup> card(D).