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Machine Leaning from 
String Data
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Alphabets and Stings
  : a finite set of symbols and called an alphabet
  : the set of all finite strings (sequences) consisting of 

the symbols in 
 An empty string is denoted by .
   {}
 The size of a string w, denoted by | w |, is the total number of 

symbols occurring in w. 
Examples
 ab
  abaaabbabb aaaaab

aaaaabab
 ATCG
  ATCGAAAGTAAAA 
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Question
 Assume that we have provided

C  : a finite set of positive examples, and 
D : a finite  set of negative examples 
such that C D = .

 Develop a computer program to find a rule 
which accepts all positive examples and rejects 
all negative examples.
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 It could hold that every string in C1 starts with a and 
end with b.

Example 2
C2 = {ba bababa bababababababababa
D2 = {a bbbbbabbbaaaaba babbb

 It might hold that every string in C2 is made of some 
repetition of ba.
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Examples
Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D3 ={a bbbbbabbbaaaaba babbb

 Every string in C3 consists of two strings: The first 
string consists only of  a’s, and the second consists of 
the same number of b’s.

Example 4
C4 = {aa abaabaaaaaaaabaaababab
D4 = {a bbbbbabbbbbbbbba babbb

 In every string in C4 has more than two a’s.
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The First Problem 
 What is the grammar and vocabulary with which 

we represent the rule to distinguish C and D?
 In the linear classification case, the rule to be found 

is represented in the form of (w, x) + c s.t.
x C  (w, x) + c  0 
x D  (w, x) + c  0  

 The region including C is 
represented with an 
inequation

(w, x) + c  0 
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Solutions to the Problem
 We adopt some representation method with which 

we  represent a subset of  which includes C.
 Since the rule found by some learning mechanism is 

expected to be “general”, the set should be sufficiently 
large.
Rules should not overfit the examples.

 A rule which represents a rule is sometimes called a 
predicate.
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 The rule which is output by a learning machine 
would represent a set

L1 = {ab aababb aaabaabbabab abbb
aaaab aaabb abaab abbbb
aaaabbbb
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Examples
Example 3
C2 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D2 ={a bbbbbabbbaaaaba babbb

 You may imagine that the rule which is output by 
a learning machine would represent a set

L2 = {ab aabbaaabbbaaaabbbb aaaaabbbbb
aaaaaabbbbbb
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Formal Languages
 Every subset of  is called a formal language. 
Example

ab  abaaabbabb aaaaab
L1 aababbaaabaabbabababbb
L2 abaabbaaabbbaaaabbbb



L1 L2

aabb
aab abb

aaab abab

ab

abbb

aaabbb
aaaabbbb

ba

abaaa

baa

a b


11



Learning by Enumerating FA
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Learning Problems
 Find an FA which accepts the strings in C and 

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb
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Formulation of Learning FA
 Formulation of Learning

argminMFA ( x Data Loss(M, x) +  P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with 
a sign such that s = + if w C and s =  if w D,

0  if     x = <w, + > and w L(M )
Loss(M, x) = or x = <w,  > and w  L(fM),

otherwise,
P(M) : the number of states in M
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton. 
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn  L(k )) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk 

 With which M’ should we replace ?

 Assume we have a method to generate a new 
automaton.
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Simple Strategy of Learning

 With referring the existence of minimum FA, we can 
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small 
to large according to their sizes.
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Representation of Finite State Automata  

 Mathematically, a finite state automaton is represented 
in the form  M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function 

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm
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Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0  q0 q0

L(M0) =  L(M0) = 
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Generation by Enumeration
 We can make an infinite but effective 

enumeration of  all automata, because 
every automaton can be represented
as a transition table.

 This means that we can have an infinite 
sequence of automata 
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced 
with M’ = Mi+1.

F a1 … an

q0

…

qm
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Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0
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Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let  k = 0
forever

let  k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’ )) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk 

Assume a procedure of enumerating all FA so that 
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …
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Some Properties of the Algorithm

 The algorithm always terminates because 
for any pair of C and D (C D = 
there exists a finite state automaton M such that  
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If  the enumeration is made so that “smaller automata 
appear earlier”, the algorithm returns the smallest 
automaton M such that 

L(M)  C and L(M) D = 
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Note 1
 There might be several automata consistent with  

given C and D.
 For any finite set C , we can easily construct 

a finite state automaton which accepts only the 
strings in C, and rejects all strings not contained 
in C. 
 The FA is called a prefix tree automaton.
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Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b
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Prefixes of a String
Definition A string u  is a prefix of another string s

There exists a string v such that  s = uv.
For a set S , we let 

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab, 
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}. 
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Prefix Tree Automata
Definition A prefix tree automaton of a finite set S 
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where 

QP(S) = { qs | s P(S) }, 
qs, c) = qsc if sP(S) and sc P(S), 

QS = { qs | s S }

aqab qabaqaq
bas = aba
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Note 
 The automaton does not satisfy the mathematical 

definition because, for example, no transition from q0 is 
defined for the symbol b. 
 This means that  is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special 
state q (called a dead state) and letting every missing 
value of  be q.

 Under assuming this recover, we 
modify the definition.

q

a, b
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Finite state automata (3)  
 A finite state automata is defined as 

M = (, Q, , q0, F)
where 

Q is a set of states
 : Q×  Q is a partial transition function 

represented as a transition table
q0  Q is an initial state
F  Q is a set of final state
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Is the automaton pleasant? 
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C. 
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added 
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general 

guesses from examples. 
 The prefix automaton tree overgeneralize the set D of negative 

examples.
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Note 2 
 There is a  minimum one in the sense that the number of 

states in it is minimum.
 Unfortunately it is proved that the problem of finding a 

minimum automaton consistent with  given C and D is 
NP-hard.
 The activity of a learning algorithm should not be evaluated 

(justified) only on the viewpoint of optimization. 
 Even though it were not ensured that the algorithm returns the 

best solution, the algorithm could work as “learning”.
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Generalization by Merging 
States
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Generalization by Merging States
 The prefix tree T can be transformed into a more 

general automaton by merging several states into 
one states.
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Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b
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Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a
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Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general 
automaton, and 
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the 
second merge as far as possible.

c

c
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Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is 
a collection ={B1, B2,…, Bn} of subsets of Q satisfying 
1. every Bi is not empty,
2. Bi  Bj =  for every pair of i and j such that i  j,
3. B1  B2  Bn = .  

Every Bi is called a bock of  . 
 A block B = {q1, q2,…, qm } represents a state obtained 

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.  
To merge two blocks Bi and Bj means to revise to 
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.
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Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, , 
q0, F) is consistent 

for every block Bi ,  every pair p, q  Bi and 
every symbol c 
if both (p, c)  and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c)  Bj .

c

cp

q

Bi Bj
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Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is 
consistent we can define a partial function 

’ : ×  
and also an automaton M’ = (, , ’, B0, F’) with 

F’ = {Bi | some q Bi  is in F }.  
The automaton is denoted M/ . 
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RPNI Algorithm[Oncina and Gracia92] 
Regular  Positive Negative Inference (PRNI) Algorithm 
Inputs :  C   : a finite set of positive examples

D   : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s  P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi  Bi and qsj Bj such that Bi  Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 40



How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn] 

of P(C). 
 We had better use some order < and make the list so 

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or  

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b <  ab < ba < abb < bab
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Example: Merging States
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab, 
ba, abb,
bab 42



Example: Merging States(cont.)
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a
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Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

bbb b
a

a a



a

b
b b

a

a
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Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

a, b
bb b

a
a a



a

b b

a

b
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Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]


aaa

bbb b bb

a
aaa

bbb

a a



a

b
bb b bb

a



a

b b

a



a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b
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Effect of the Order (4)
 It is proved that the length-wise lexico-graphic 

order is better than its inverse. 
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Finding minimum FA
 Finding a minimum FA consistent with a finite 

amount of positive and  negative examples is 
NP-hard.

 The automata found by RPNI is not always 
minimal, but outputs in polynomial time 

card(C)2 card(D). 
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