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Machine Leaning from 
String Data
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Alphabets and Stings
  : a finite set of symbols and called an alphabet
  : the set of all finite strings (sequences) consisting of 

the symbols in 
 An empty string is denoted by .
   {}
 The size of a string w, denoted by | w |, is the total number of 

symbols occurring in w. 
Examples
 ab
  abaaabbabb aaaaab

aaaaabab
 ATCG
  ATCGAAAGTAAAA 
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Question
 Assume that we have provided

C  : a finite set of positive examples, and 
D : a finite  set of negative examples 
such that C D = .

 Develop a computer program to find a rule 
which accepts all positive examples and rejects 
all negative examples.
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 It could hold that every string in C1 starts with a and 
end with b.

Example 2
C2 = {ba bababa bababababababababa
D2 = {a bbbbbabbbaaaaba babbb

 It might hold that every string in C2 is made of some 
repetition of ba.
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Examples
Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D3 ={a bbbbbabbbaaaaba babbb

 Every string in C3 consists of two strings: The first 
string consists only of  a’s, and the second consists of 
the same number of b’s.

Example 4
C4 = {aa abaabaaaaaaaabaaababab
D4 = {a bbbbbabbbbbbbbba babbb

 In every string in C4 has more than two a’s.
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The First Problem 
 What is the grammar and vocabulary with which 

we represent the rule to distinguish C and D?
 In the linear classification case, the rule to be found 

is represented in the form of (w, x) + c s.t.
x C  (w, x) + c  0 
x D  (w, x) + c  0  

 The region including C is 
represented with an 
inequation

(w, x) + c  0 
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Solutions to the Problem
 We adopt some representation method with which 

we  represent a subset of  which includes C.
 Since the rule found by some learning mechanism is 

expected to be “general”, the set should be sufficiently 
large.
Rules should not overfit the examples.

 A rule which represents a rule is sometimes called a 
predicate.
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 The rule which is output by a learning machine 
would represent a set

L1 = {ab aababb aaabaabbabab abbb
aaaab aaabb abaab abbbb
aaaabbbb
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Examples
Example 3
C2 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D2 ={a bbbbbabbbaaaaba babbb

 You may imagine that the rule which is output by 
a learning machine would represent a set

L2 = {ab aabbaaabbbaaaabbbb aaaaabbbbb
aaaaaabbbbbb
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Formal Languages
 Every subset of  is called a formal language. 
Example

ab  abaaabbabb aaaaab
L1 aababbaaabaabbabababbb
L2 abaabbaaabbbaaaabbbb



L1 L2

aabb
aab abb

aaab abab

ab

abbb

aaabbb
aaaabbbb

ba

abaaa

baa

a b
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Learning by Enumerating FA
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Learning Problems
 Find an FA which accepts the strings in C and 

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb
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Formulation of Learning FA
 Formulation of Learning

argminMFA ( x Data Loss(M, x) +  P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with 
a sign such that s = + if w C and s =  if w D,

0  if     x = <w, + > and w L(M )
Loss(M, x) = or x = <w,  > and w  L(fM),

otherwise,
P(M) : the number of states in M
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton. 
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn  L(k )) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk 

 With which M’ should we replace ?

 Assume we have a method to generate a new 
automaton.
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Simple Strategy of Learning

 With referring the existence of minimum FA, we can 
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small 
to large according to their sizes.

16



Representation of Finite State Automata  

 Mathematically, a finite state automaton is represented 
in the form  M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function 

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm
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Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0  q0 q0

L(M0) =  L(M0) = 
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Generation by Enumeration
 We can make an infinite but effective 

enumeration of  all automata, because 
every automaton can be represented
as a transition table.

 This means that we can have an infinite 
sequence of automata 
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced 
with M’ = Mi+1.

F a1 … an

q0

…

qm
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Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0
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Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let  k = 0
forever

let  k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’ )) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk 

Assume a procedure of enumerating all FA so that 
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …
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Some Properties of the Algorithm

 The algorithm always terminates because 
for any pair of C and D (C D = 
there exists a finite state automaton M such that  
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If  the enumeration is made so that “smaller automata 
appear earlier”, the algorithm returns the smallest 
automaton M such that 

L(M)  C and L(M) D = 
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Note 1
 There might be several automata consistent with  

given C and D.
 For any finite set C , we can easily construct 

a finite state automaton which accepts only the 
strings in C, and rejects all strings not contained 
in C. 
 The FA is called a prefix tree automaton.
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Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b
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Prefixes of a String
Definition A string u  is a prefix of another string s

There exists a string v such that  s = uv.
For a set S , we let 

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab, 
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}. 
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Prefix Tree Automata
Definition A prefix tree automaton of a finite set S 
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where 

QP(S) = { qs | s P(S) }, 
qs, c) = qsc if sP(S) and sc P(S), 

QS = { qs | s S }

aqab qabaqaq
bas = aba
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Note 
 The automaton does not satisfy the mathematical 

definition because, for example, no transition from q0 is 
defined for the symbol b. 
 This means that  is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special 
state q (called a dead state) and letting every missing 
value of  be q.

 Under assuming this recover, we 
modify the definition.

q

a, b
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Finite state automata (3)  
 A finite state automata is defined as 

M = (, Q, , q0, F)
where 

Q is a set of states
 : Q×  Q is a partial transition function 

represented as a transition table
q0  Q is an initial state
F  Q is a set of final state
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Is the automaton pleasant? 
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C. 
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added 
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general 

guesses from examples. 
 The prefix automaton tree overgeneralize the set D of negative 

examples.
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Note 2 
 There is a  minimum one in the sense that the number of 

states in it is minimum.
 Unfortunately it is proved that the problem of finding a 

minimum automaton consistent with  given C and D is 
NP-hard.
 The activity of a learning algorithm should not be evaluated 

(justified) only on the viewpoint of optimization. 
 Even though it were not ensured that the algorithm returns the 

best solution, the algorithm could work as “learning”.
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Generalization by Merging 
States
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Generalization by Merging States
 The prefix tree T can be transformed into a more 

general automaton by merging several states into 
one states.
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Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b
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Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a
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Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general 
automaton, and 
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the 
second merge as far as possible.

c

c
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Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is 
a collection ={B1, B2,…, Bn} of subsets of Q satisfying 
1. every Bi is not empty,
2. Bi  Bj =  for every pair of i and j such that i  j,
3. B1  B2  Bn = .  

Every Bi is called a bock of  . 
 A block B = {q1, q2,…, qm } represents a state obtained 

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.  
To merge two blocks Bi and Bj means to revise to 
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.
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Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, , 
q0, F) is consistent 

for every block Bi ,  every pair p, q  Bi and 
every symbol c 
if both (p, c)  and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c)  Bj .

c

cp

q

Bi Bj
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Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is 
consistent we can define a partial function 

’ : ×  
and also an automaton M’ = (, , ’, B0, F’) with 

F’ = {Bi | some q Bi  is in F }.  
The automaton is denoted M/ . 
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RPNI Algorithm[Oncina and Gracia92] 
Regular  Positive Negative Inference (PRNI) Algorithm 
Inputs :  C   : a finite set of positive examples

D   : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s  P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi  Bi and qsj Bj such that Bi  Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 40



How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn] 

of P(C). 
 We had better use some order < and make the list so 

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or  

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b <  ab < ba < abb < bab
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Example: Merging States
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab, 
ba, abb,
bab 42



Example: Merging States(cont.)
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a
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Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

bbb b
a

a a



a

b
b b

a

a
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Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

a, b
bb b

a
a a



a

b b

a

b
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Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]


aaa

bbb b bb

a
aaa

bbb

a a



a

b
bb b bb

a



a

b b

a



a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b
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Effect of the Order (4)
 It is proved that the length-wise lexico-graphic 

order is better than its inverse. 
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Finding minimum FA
 Finding a minimum FA consistent with a finite 

amount of positive and  negative examples is 
NP-hard.

 The automata found by RPNI is not always 
minimal, but outputs in polynomial time 

card(C)2 card(D). 
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