
Computational Learning Theory
Learning Finite State Automata

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Machine Leaning from
String Data

2

Alphabets and Stings
  : a finite set of symbols and called an alphabet
  : the set of all finite strings (sequences) consisting of

the symbols in 
 An empty string is denoted by .
   {}
 The size of a string w, denoted by | w |, is the total number of

symbols occurring in w.
Examples
 ab
  abaaabbabb aaaaab

aaaaabab
 ATCG
  ATCGAAAGTAAAA 

3

Question
 Assume that we have provided

C  : a finite set of positive examples, and
D : a finite set of negative examples
such that C D = .

 Develop a computer program to find a rule
which accepts all positive examples and rejects
all negative examples.

4

Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 It could hold that every string in C1 starts with a and
end with b.

Example 2
C2 = {ba bababa bababababababababa
D2 = {a bbbbbabbbaaaaba babbb

 It might hold that every string in C2 is made of some
repetition of ba.

5

Examples
Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D3 ={a bbbbbabbbaaaaba babbb

 Every string in C3 consists of two strings: The first
string consists only of a’s, and the second consists of
the same number of b’s.

Example 4
C4 = {aa abaabaaaaaaaabaaababab
D4 = {a bbbbbabbbbbbbbba babbb

 In every string in C4 has more than two a’s.
6

The First Problem
 What is the grammar and vocabulary with which

we represent the rule to distinguish C and D?
 In the linear classification case, the rule to be found

is represented in the form of (w, x) + c s.t.
x C  (w, x) + c  0
x D  (w, x) + c  0

 The region including C is
represented with an
inequation

(w, x) + c  0
7

Solutions to the Problem
 We adopt some representation method with which

we represent a subset of  which includes C.
 Since the rule found by some learning mechanism is

expected to be “general”, the set should be sufficiently
large.
Rules should not overfit the examples.

 A rule which represents a rule is sometimes called a
predicate.

8

Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 The rule which is output by a learning machine
would represent a set

L1 = {ab aababb aaabaabbabab abbb
aaaab aaabb abaab abbbb
aaaabbbb

9

Examples
Example 3
C2 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D2 ={a bbbbbabbbaaaaba babbb

 You may imagine that the rule which is output by
a learning machine would represent a set

L2 = {ab aabbaaabbbaaaabbbb aaaaabbbbb
aaaaaabbbbbb

10

Formal Languages
 Every subset of is called a formal language.
Example

ab  abaaabbabb aaaaab
L1 aababbaaabaabbabababbb
L2 abaabbaaabbbaaaabbbb



L1 L2

aabb
aab abb

aaab abab

ab

abbb

aaabbb
aaaabbbb

ba

abaaa

baa

a b


11

Learning by Enumerating FA

12

Learning Problems
 Find an FA which accepts the strings in C and

rejects the strings in D.
C = {ab aababaabaaabaaaabbbbabab
D = {a bbbbbabbabaaaaba babb

13

Formulation of Learning FA
 Formulation of Learning

argminMFA ( x Data Loss(M, x) +  P(M))

where FA : the set of all finite state automata,
Data : a finite set of pairs x = <w, s> of a string with
a sign such that s = + if w C and s =  if w D,

0 if x = <w, + > and w L(M)
Loss(M, x) = or x = <w,  > and w  L(fM),

otherwise,
P(M) : the number of states in M

14

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M as some automaton.
for k = 1,2,…

Mk = Mk1
for n = 1,2,…, N,

if (xn C and xn  L(k)) or (xn D and xn L(Mk))
replace Mk with another ’

if Mk = Mk1

terminate and output Mk

 With which M’ should we replace ?

 Assume we have a method to generate a new
automaton.

15

Simple Strategy of Learning

 With referring the existence of minimum FA, we can
easily imagine a simple strategy of learning:

Generate all FA, and enumerate them from small
to large according to their sizes.

16

Representation of Finite State Automata

 Mathematically, a finite state automaton is represented
in the form M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm

17

Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0  q0 q0

L(M0) =  L(M0) = 

18

Generation by Enumeration
 We can make an infinite but effective

enumeration of all automata, because
every automaton can be represented
as a transition table.

 This means that we can have an infinite
sequence of automata
M1, M2, …
any automaton M appears as Mi = M.

 In the algorithm M = Mi is just replaced
with M’ = Mi+1.

F a1 … an

q0

…

qm

19

Enumeration of Automata(1)

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

20

Enumeration of Automata(2)

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

F a b
q0 v q0 q1

q1 q1 q0

F a b
q0 v q0 q1

q1 q1 q1

…

21

A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let k = 0
forever

let k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’)) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk

Assume a procedure of enumerating all FA so that
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …

22

Some Properties of the Algorithm

 The algorithm always terminates because
for any pair of C and D (C D = 
there exists a finite state automaton M such that
L(M) = C and L(M) D = , and this M
appears in the enumeration as Mi = M.

 If the enumeration is made so that “smaller automata
appear earlier”, the algorithm returns the smallest
automaton M such that

L(M)  C and L(M) D = 

23

Note 1
 There might be several automata consistent with

given C and D.
 For any finite set C , we can easily construct

a finite state automaton which accepts only the
strings in C, and rejects all strings not contained
in C.
 The FA is called a prefix tree automaton.

24

Example
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

q0

a

a

a
a

a
a

b

b

b

b

b
b

b
b

b

25

Prefixes of a String
Definition A string u  is a prefix of another string s

There exists a string v such that s = uv.
For a set S , we let

P(S) = { u * | u is a prefix of some s in S }.

Example The prefixes of aab are , a, aa, and aab,
the prefixes of ab are , a, and ab, and so we have

P({ab , aab}) = {, a, aa, ab , aab}.

26

Prefix Tree Automata
Definition A prefix tree automaton of a finite set S 
is defined as
M = (, Q = QP(S) , , q0 = q, F = QS)
where

QP(S) = { qs | s P(S) },
qs, c) = qsc if sP(S) and sc P(S),

QS = { qs | s S }

aqab qabaqaq
bas = aba

27

Note
 The automaton does not satisfy the mathematical

definition because, for example, no transition from q0 is
defined for the symbol b.
 This means that  is not a mathematical function, but a partial

function.

 This fault can be easily recovered by adding a special
state q (called a dead state) and letting every missing
value of  be q.

 Under assuming this recover, we
modify the definition.

q

a, b

28

Finite state automata (3)
 A finite state automata is defined as

M = (, Q, , q0, F)
where

Q is a set of states
 : Q×  Q is a partial transition function

represented as a transition table
q0  Q is an initial state
F  Q is a set of final state

29

Is the automaton pleasant?
 The prefix tree automaton T overfits C.

 It accepts no strings which is not in C.
 It must be revised if new examples are added to C.

 It is a natural to assume that positive examples and negative are added
more experiments or observations are made.

 The prefix tree automaton T does not generalize C.
 Intuitively learning should be activity of making general

guesses from examples.
 The prefix automaton tree overgeneralize the set D of negative

examples.

30

Note 2
 There is a minimum one in the sense that the number of

states in it is minimum.
 Unfortunately it is proved that the problem of finding a

minimum automaton consistent with given C and D is
NP-hard.
 The activity of a learning algorithm should not be evaluated

(justified) only on the viewpoint of optimization.
 Even though it were not ensured that the algorithm returns the

best solution, the algorithm could work as “learning”.

31

Generalization by Merging
States

32

Generalization by Merging States
 The prefix tree T can be transformed into a more

general automaton by merging several states into
one states.

33

Example: Merging States
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

b b

b

b

a, b

b

ba

a, b
b

b a, b

34

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}

a

bb a

b

ba

a

bb a

a

b b

b

b

b

bb

a
ba

bb

a
a

b

b

a a

35

Two Types of Merge
 We have to treat two types of merge:

1. Merging two states to generate a more general
automaton, and
2. Merging two states to keep the automaton deterministic

(in other words, consistent).

 Strategy: first apply the first merge, and then try the
second merge as far as possible.

c

c

36

Partitions and Blocks
Definition A partition of a set Q of states of a automaton, is
a collection ={B1, B2,…, Bn} of subsets of Q satisfying
1. every Bi is not empty,
2. Bi  Bj =  for every pair of i and j such that i  j,
3. B1  B2  Bn = .

Every Bi is called a bock of  .
 A block B = {q1, q2,…, qm } represents a state obtained

by merging the states q1, q2,…, qm into one.
Definition Let ={B1, B2,…, Bn} be a partition of states.
To merge two blocks Bi and Bj means to revise to
i,j)={B1, B2,…, Bn}{Bi, Bj }{Bi Bj}.

37

Consistent Partition
Definition A partition ={B1, B2,…, Bn} for M = (, Q, ,
q0, F) is consistent

for every block Bi , every pair p, q  Bi and
every symbol c 
if both (p, c) and (q, c) are defined, then
there is a block Bj such that both (p, c) and (q, c)  Bj .

c

cp

q

Bi Bj

38

Partitioned Automata
If a partition ={B1, B2,…, Bn} for M = (, Q, , q0, F) is
consistent we can define a partial function

’ : ×  
and also an automaton M’ = (, , ’, B0, F’) with

F’ = {Bi | some q Bi is in F }.
The automaton is denoted M/ .

39

RPNI Algorithm[Oncina and Gracia92]
Regular Positive Negative Inference (PRNI) Algorithm
Inputs : C   : a finite set of positive examples

D   : a finite set of negative examples
Method : Make a list [s1, s2,…,sn] of elements in P(C)

Make the prefix automaton M of C; k = 0; 0={{qs}|s  P(C)}
for i = 2 to n

for j = 1 to i 1
if qsi  Bi and qsj Bj such that Bi  Bj

let ’ be the partition obtained by merging Bi and Bj
while ’ is not consistent

Choose a pair q’B’ and q”B” violating the consistency
’:= the partition obtained by merging B’ and B’’ in ’

if M/’ rejects all strings in D
k := ’ ; k := k +1

Output M/k 40

How to make the list of examples
 We have to fix a method of making the list [s1, s2,…,sn]

of P(C).
 We had better use some order < and make the list so

that
s1 < s2 < …< sn

 We use the length-wise lexico-graphic order:
s < t if | s | < | t | or

| s | = | t | and s is earlier than t in the lexico-
graphic order

Example a < b < ab < ba < abb < bab

41

Example: Merging States
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab
a

bb a ba

abb

bab

a

a
bb, abb a ba bab

a

a b
abb

b

b

abb
b

bab

a, b abb

b

a
b, ab ba

bab

a, b abbb

b
ba

a, b
a
b, ab
ba

ab, ab,
ba, abb,
bab 42

Example: Merging States(cont.)
C = {abb, bab}, D = {ab}


aba

bbb a ba

b
abb

bab

a b

bb

a
ba

bab

abb

bb

a
a

abb
bab b

b

a a

bb a ba

a
abb

b

b
abb

bab

a
bb, abb a ba bab

a abb
b

b, ab
ba

b, ab
ba

a

a b, ab
ba

a
abb,
bab

a

43

Effect of the Order (1)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba, aab, aba, abb, baa, bab, bba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

bbb b
a

a a



a

b
b b

a

a

44

Effect of the Order (2)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[bbb, aaa, bb, aa, b, a]


aaa

bbb b bb

a
aaa

bbb

a a


aaa

b
bb b bb

aa a

aaa
bbb


aaa

a, b
bb b

a
a a



a

b b

a

b

45

Effect of the Order (3)
 C = {a, b, aa, bb, aaa, bbb}

D = {, ab, ba}
[a, b, aa, bb, aaa, bbb]


aaa

bbb b bb

a
aaa

bbb

a a



a

b
bb b bb

a



a

b b

a



a

b

a

bbb

a

b
bb

aaa

aaa

a

a

b

46

Effect of the Order (4)
 It is proved that the length-wise lexico-graphic

order is better than its inverse.

47

Finding minimum FA
 Finding a minimum FA consistent with a finite

amount of positive and negative examples is
NP-hard.

 The automata found by RPNI is not always
minimal, but outputs in polynomial time

card(C)2 card(D).

48

