Computational Learning Theory

,'- Learning Finite State Automata

Akihiro Yamamoto LUK E &

http://www 1ip.ist.1.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

Machine Leaning from

,'_ String Data

L Alphabets and Stings

= X : a finite set of symbols and called an alphabet
= X" : the set of all finite strings (sequences) consisting of

the symbols 1n X.
= An empty string is denoted by «.
m 2T=2%— {8}
= The size of a string w, denoted by | w |, 1s the total number of
symbols occurring in w.

Examples
s 2 ={a, b}
>*={g, a, b, aa, ab, ba, bb, aaa, aab,... }
l@aa|=laab|=3,la|=1|b|=1, |e|=0
s X={ATC G}
> =1, AT, C G AA .. AGTA, . AAA,. . }

L Question

= Assume that we have provided
C c 2*: a finite set of positive examples, and
D c X*: a finite set of negative examples
suchthat C D = .

= Develop a computer program to find a rule
which accepts all positive examples and rejects
all negative examples.

i Examples

Example 1

C, = {ab, aab, abaab, aaab, aaaabbbb,abab}
D, = {a, b, bbbb, abba, baaaaba, babb}

= [t could hold that every string in C, starts with a and
end with b.

Example 2

C, = {ba, bababa, babababa, bababababa}
D, = {a, b, bbbb, abb, baaaaba, babbb}

= [t might hold that every string in C, is made of some
repetition of ba.

5

i Examples

Example 3

C, ={aaabbb, ab, aaaabbbb, aaaaabbbbb, aabb}
D, ={a, b, bbbb, abb, baaaaba, babbb}

= Every string in C; consists of two strings: The first
string consists only of a’s, and the second consists of
the same number of b’s.

Example 4
C, = {aa, abaaba, aaaaaaa, baaab, abab}
D, = {a, b, bbbb, abb, bbbbbbba, babbb}

= Ineverystring in C, has more than two a’s.

i The First Problem

= What is the grammar and vocabulary with which
we represent the rule to distinguish C and D?

= In the linear classification case, the rule to be found
is represented 1n the form of (w, X) + C s.t.

XeC=> W, x)+c=>0
XeD= Ww,x)+c<0

7 = The region including C i1s
o Rl represented with an
*.° inequation
[/
R (W, X)+c=>0
/7 @
/ 7

L Solutions to the Problem

= We adopt some representation method with which
we represent a subset of 2* which includes C.

= Since the rule found by some learning mechanism 1s
expected to be “general”, the set should be sufficiently
large.

Rules should not overfit the examples.

= A rule which represents a rule 1s sometimes called a
predicate.

i Examples

Example 1

C, = {ab, aab, abaab, aaab, aaaabbbb,abab}
D, = {a, b, bbbb, abba, baaaaba, babb}

= The rule which 1s output by a learning machine
would represent a set

L, = {ab, aab, abb, aaab, aabb, abab, abbb,
aaaab, aaabb, ..., abaab, ..., abbbb,
..., aaaabbbb, ...}

L Examples

Example 3

C, ={aaabbb, ab, aaaabbbb, aaaaabbbbb, aabb}
D, ={a, b, bbbb, abb, baaaaba, babbb}

= You may imagine that the rule which 1s output by
a learning machine would represent a set

L, = {ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb,
aaaaaabbbbbb,...}

10

L Formal Languages

= Every subset of X*1s called a formal language.
Example
> =1{a, b}, X*={¢ a, b, aa, ab, ba, bb, aaa, aab,... }
L, = {aab, abb, aaab, aabb, abab, abbb,... }
L, = {ab, aabb, aaabbb, aaaabbbb.... }

T

11

+

Learning by Enumerating FA

12

i Learning Problems

= Find an FA which accepts the strings in C and
rejects the strings in D.

C = {ab, aab, abaab, aaab, aaaabbbb,abab}
D = {a, b, bbbb, abba, baaaaba, babb}

13

L Formulation of Learning FA

s Formulation of Learning

argminyy (2

where FA : the set

Loss(M, xX) + A P(M))

X eData

of all finite state automata,

Data : a finite set of pairs X = <w, s> of a string with
asignsuchthats=+1fwe Cands= - 1fw e D,

Loss(M, X) =

0 1f X=<w,+>andw e L(M)
or X =<w, —>and w ¢ L(fM),

_ o0, otherwise,

P(M) : the number of states in M

14

i A Simple Generate-and-Test Algorithm

= Assume we have a method to generate a new
automaton.

Let the input data X, X,, ..., Xy
Initialize M as some automaton.
fork=1,2,.

M, = Mk 1

forn=1,2,.... N,

if (X, CandXx, ¢ L(M,))or (X, D and X, € L(M,))
replace M, with another M
ifM, =M, _,

terminate and output M,

= With which M’ should we replace M ?

15

i Simple Strategy of Learning

= With referring the existence of minimum FA, we can
casily imagine a sitmple strategy of learning:

Generate all FA, and enumerate them from small

to large according to their sizes.

16

]L Representation of Finite State Automata

= Mathematically, a finite state automaton 1s represented

in the form M=(%, S, 9, s, F)
where
2. 1s the alphabet,
S 1s a set of states,
0 : SX X — Sis a transition function
represented as a transition table,
g, € S 1s an 1nitial state,

F — S is a set of final states.

Jo

Um

17

i Finite Automata of One State
M

0 Ml
a,b alb
Fla|b Elalb
Y% Y | Y Jo v Qo | Yo

L(My) = © L(My) = 2°

i Generation by Enumeration

= We can make an infinite but effective
enumeration of all automata, because

every automaton can be represented

as a transition table. - a, N
= This means that we can have an infinite
sequence of automata Yo
M, M, ...
any automaton M appears as M, = M. o/

= In the algorithm M = M, is just replaced
with M” = M, ,.

19

i Enumeration of Automata(1)

M, M,
N\
a,b a,b
Fla|b e|la|b

%o Yo | Yo Qo | V | Go | Yo

i Enumeration of Automata(2)

a, b
Flal|b Fla|b
o Qo | O o Go | Oy
i V10| G| VI |
Fla|b Fla|b
Qo | V [Qo | Oy Qo | V [Do | Uy
A di | Qo of d: | Oy

21

i A Simple Generate-and-Test Algorithm

Assume a procedure of enumerating all FA so that
the enumeration M,, M,, M,, ..., M, , ... satisfies

P(M,) < P(M,) < P(M,) < ... <P(M) < ...

Let the input data X, X,, ..., Xy

Initialize M = M,, as an automaton consisting of one state
let k=0

forever
let K’ =k
forn=1,2,.... N,

if (X, CandX, ¢ L(M,.))or (X, Dandx, e L(M,.))
replace K with kK + 1
if k> =Kk

terminate and output M, 22

i Some Properties of the Algorithm

= The algorithm always terminates because
for any pair of C and D (C n D = &),
there exists a finite state automaton M such that
L(M)=Cand L(M) "D =, and this M
appears in the enumeration as M; = M.

m If the enumeration 1s made so that “smaller automata
appear earlier”, the algorithm returns the smallest
automaton M such that

L(M) = C and L(M) ~ D = &.

23

i Note 1

= There might be several automata consistent with
given C and D.

= For any finite set C < X*, we can easily construct
a finite state automaton which accepts only the
strings 1n C, and rejects all strings not contained
in C.

= The FA is called a prefix tree automaton.

24

A
UQJ
o
O
O
O
=
Q)
o
O
UQJ
O
Q)
Q)
Q)
Q)
o
UQJ
O
Q)
o
O
\—~’

BYSON
S
N S

25

L Prefixes of a String

Definition A string U €X* 1s a prefix of another string seX*
<> There exists a string V € 2*such that S = uv.

For aset S c 2*, we let
P(S)={ueX*|uisaprefixof someSinS }.

Example The prefixes of aab are ¢, a, aa, and aab,

the prefixes of @b are ¢, a, and ab, and so we have
P({ab, aab}) = {¢, a, aa, ab, aab}.

26

i Prefix Tree Automata

Definition A prefix tree automaton of a finite set S — X~
is defined as

M= (%, Q:Qp(s) ,0,0,=0,, F=Q5)

where

Qps)= 10515 € PO},
o, C)= Q. 1fse P(S)andsc € P(S),
Qs=10slsesS}

27

L Note

The automaton does not satisty the mathematical
definition because, for example, no transition from ¢, 1s
defined for the symbol b.

= This means that o i1s not a mathematical function, but a partial
function.

= This fault can be easily recovered by adding a special
state 0., (called a dead state) and letting every missing
value of 0 be q,,.

= Under assuming this recover, we
modify the definition. a,b

28

’L Finite state automata (3)

= A finite state automata 1s defined as
M=(Z,Q,8, dp F)
where
Q 1s a set of states
0: QX X — Q 1s apartial transition function
represented as a transition table
J, € Q 1s an initial state

F < Q 1s a set of final state

29

Is the automaton pleasant?

» The prefix tree automaton T overfits C.
= [t accepts no strings which is not in C.

= It must be revised if new examples are added to C.

= It is a natural to assume that positive examples and negative are added
more experiments or observations are made.

s The prefix tree automaton T does not generalize C.

= Intuitively learning should be activity of making general
guesses from examples.

= The prefix automaton tree overgeneralize the set D of negative
examples.

30

i Note 2

s There 1s a minimum one 1n the sense that the number of
states 1n 1t 1S minimum.

= Unfortunately it 1s proved that the problem of finding a
minimum automaton consistent with given C and D 1s
NP-hard.

= The activity of a learning algorithm should not be evaluated
(justified) only on the viewpoint of optimization.

= Even though it were not ensured that the algorithm returns the
best solution, the algorithm could work as “learning”.

31

+

Generalization by Merging
States

32

i Generalization by Merging States

m The prefix tree T can be transformed 1nto a more
general automaton by merging several states into
one states.

33

Example: Merging States
C = {abb, bab}, D = {ab}

-

b b a b
_,a o ©¢> b/Q—*@
OO0 O RO
’ a, b]
‘ =

-0 34

Example: Merging States(cont.)
= {abb, bab}, D = {ab}

*Q/%@
%/
%b»@ |

i Two Types of Merge

= We have to treat two types of merge:

1. Merging two states to generate a more general
automaton, and

2. Merging two states to keep the automaton deterministic

(in other words, consistent).
S

O A0,

» Strategy: first apply the first merge, and then try the
second merge as far as possible.

36

i Partitions and Blocks

Definition A partition of a set Q of states of a automaton, 1s
a collection 1 ={B,, B,,..., B,,} of subsets of Q satisfying

1. every B; 1s not empty,
2. B; n B; = for every pair of I and J such that 1 # |,
3.BuB,u...uUB, =0.

Every B; is called a bock of rt .

= AblockB=1{q,,0,...,q, } represents a state obtained
by merging the states q,, 0,,..., ., Into one.

Definition Let 1 ={B,, B,,..., B} be a partition of states.

To merge two blocks B; and B; means to revise = to
Tij=1B1, Bys..o, Boy—1B;, By }U{B; UB;}.

37

i Consistent Partition

Definition A partition n ={B, B,,..., B} for M =(Z, Q, o,
0y, F) 1s consistent

N

for every block B, , every pair p, q € B;and
every symbol C € 2,

if both o(p, ¢) and o(q, C) are defined, then
there 1s a block B; such that both o(p, €) and 6(q, C) € B;.

{O\CIS
|

\ J ———

38

’L Partitioned Automata

If a partition ©t ={B,, B,,..., B} for M = (2, Q, 0, q,, F) 1s
consistent we can define a partial function

O M XXM

and also an automaton M’ = (X, &, 0°, B, F’) with
F>={B,| someq € B, isin F }.

The automaton 1s denoted M/= .

39

RPNI Algorithm[Oncina and Gracia92]

Regular Positive Negative Inference (PRNI) Algorithm
Inputs : C — 2* : a finite set of positive examples
D < 2* : a finite set of negative examples
Method : Make a list [S,, S,,...,S,| of elements in P(C)
Make the prefix automaton M of C; k= 0; n,={{q.}|s € P(C)}
fori=2ton
forj=1to1-1
if g ; € B;and g € B;such that B; = B;
let ©° be the partition obtained by merging B; and B;
while 7’ 1s not consistent
Choose a pair 9’ B’ and ”eB” violating the consistency
n’:= the partition obtained by merging B’ and B’ in 7’
if M/’ rejects all strings in D
T =n ; Ki=k+1
Output M/m,

40

’L How to make the list of examples

= We have to fix a method of making the list [S;, S,,...,S,]
of P(C).

s We had better use some order < and make the list so
that

S, <S,<...<S,
= We use the length-wise lexico-graphic order:
s<tif|s|<|t|or
| S| =|t]|and s is earlier than t in the lexico-
graphic order

Example a <b < ab < ba < abb < bab

41

Example: Merging States
C = {abb, bab}, D = {ab}

ai> b/
Db 2xbayr) b b
3 h a, b)
*i é; .
b (ba 26 ab o)
E> gaa;)ab
Sase x

) ® @

Example: Merging States(cont.)
= {abb, bab}, D = {ab}

"@/‘ /'b

RN
o

Effect of the Order (1)

= {a, b, aa, bb, aaa, bbb}
D = {g, ab, ba, aab, aba, abb, baa, bab, bba}
(bbb, aaa, bb, aa, b, a]

\‘M (6a) e
Sormee

Effect of the Order (2)

C={a, b, aa, bb, aaa, bbb}
D = {¢, ab, ba}
[bbb, aaa, bb, aa, b, a]

\.M o8
@@ >¢

<l
poey ‘\oo

Effect of the Order (3)

= C={a, b, aa, bb, aaa, bbb}
D = {¢, ab, ba}
[a, b, aa, bb, aaa, bbb]

aaa[>\G>a/'a
e T
a a

Yo = Yol

> =

b

46

i Effect of the Order (4)

» [t 1s proved that the length-wise lexico-graphic
order 1s better than its inverse.

47

i Finding minimum FA

s Finding a mimmimum FA consistent with a finite

amount of positive and negative examples 1s
NP-hard.

= The automata found by RPNI 1s not always
minimal, but outputs in polynomial time

card(C)? card(D).

48

