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Note 
 There might be several automata consistent with  given 

C and D.
 In such automata there is a  minimum one in the sense 

that the number of states in it is minimum.
 Unfortunately it is proved that the problem of finding a 

minimum automaton consistent with  given C and D is 
NP-hard.
 The activity of a learning algorithm should not be evaluated 

(justified) only on the viewpoint of optimization. 
 Even though it were not ensured that the algorithm returns the 

best solution, the algorithm could work as “learning”.
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A Simple Generate-and-Test Algorithm

Let the input data x1, x2, …, xN
Initialize M = M0 as an automaton consisting of one state
let  k = 0
forever

let  k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’ )) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk 

Assume a procedure of enumerating all FA so that 
the enumeration M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …
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Example
 Enumeration of FAs

q0 q1a,b a,b
M0 M1

q0
b

a
b

a q0
a

a, b
bq1

q1 …

M2 M3

Input:
 : <ab,+>, <aab,+>, < bbb,>, <aaab,+>, <abba,>,… 
Output:

M1 M1                    M3                  M3 … 4



Example(cont.)
Input:
 : …, < bbb,>, <aaab,+>, <abba,>,… …      …    …
Output:

…       M3                  M3                        …       … M’ M’ M’

q0

q2q3

b

a,b

a

a
a

b

q1

b

M L(M’) = L(M) 
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Note 
 For a finite automaton M, there might be exists another 

automaton such that L(M) = L(M’). 

q0
b

b
a q1 a q0

b

b

a q1 a

q2 aq3

bb

a
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Evaluation of Learning
Algorithm

7



Support Vector Machine
 Input: a set of numerical data

{(x1, c1) , (x2 , c2) ,..., (xm, cm) } xi Rn

where each ci {+1, 1} is a class signal for xi

Output: find a liner function (hyper-plane)
f (x) =  wi xi · x + b

which sign ( f (xi)) = yi for all i and
maximize the margin  min1 i m d(f , xi)

+1
1
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General Learning
 Recently a machine learning method is 

recognized as one to find
argminfH ( x D Loss(f, x) +  P(f ))

where 
Loss(f, x) is a loss function and
P(f ) = is a penalty function.  

 This definition is declarative. 
 This course we introduce some of the instances of 

Loss(f, x) and P(f ).
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Abstract Classification
 A half-plane P which contains C (yes) and excludes D 

(no) is to be learned
 The half-plane P  is represented as a pair  (w, c) which 

means the linear inequation (w, x) + c > 0. 
 Let C(p)={x  Rn | p(x) } for a predicate p. 

Then the search space (version space) is 
C = {C( x.((w, x) + c > 0)) | w  Rn , c  Rn }.

The set of parameter s are from  
H = { (w, c) | w  Rn , c  Rn }. 

 The training examples are provided as the sets C and D.
 A learning algorithm is provided. 
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Typical evaluation method

 A learning algorithm A is evaluated  with test data as 
follows.

Step1. Let C* are set of all positive data and  D* be are all 
negatives.
Step 2. Select subsets Ctraining C*  and Dtraining  D* for 
training. 
Step 3. Apply A to the pair Ctraining and Dtraining and obtain a 
rule f.
Step 4. Select subsets Ctest and Dtest make a confusion matrix. 
Step 5. Calculate some measures from the confusion matrix. 
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Confusion Matrix
 Every data is represented as a pair x = <w, s>

s = + if w C and s =  if w D

Ctest Dtest

{w CtestDtest|  f(w) = 1 }
positive

true positive false positive

{w CtestDtest|  f(w) = 1 }
negative

false negative true negative
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Measures
 Accuracy            | TP | + | TN | 

| TP | + | FP | + | TN | + | FN | 
 Error rates    1- Accuracy
 Precision (positive predictive rate)

| TP | 
| TP | + | FP |  

 Recall (coverage, true-positive rate, 
sensitivity)     | TP | 

| TP | + | FN |  
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Comparison with an Unknown Function
 Assuming an unknown discriminant function f* such that

C* = { x = <w, 1>   |  f* (w) = 1 }
D* = { x = <w, 1>   |  f* (w) = 0 }

we evaluate the learning algorithm A by comparing  its 
output f with f* .
 If  every function f that we treat is represented as a 

parameter p,  we compare  p for f and p* for f* .
 Every linear inequation (w, x) + c > 0 is represented as a 

parameter vector (w, c). 
 We evaluate A with comparing (w, c) and (w*, c*). 
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Correctness with Unknown Functions (1)
 Assuming an unknown discriminant function f* ,

we could say that the learning algorithm A is correct if 
the output f  of  A becomes nearer f* when more data are   
fed to A.

 Mathematically, consider a infinite sequence of training  
data sets  (C0, D0), (C1, D1), (C2, D2),… such that 

C0 C1 C2 C* and 
D0 D1 D2 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if || fi – f* ||  0 for any of
such sequences. 15



Correctness with Unknown Functions (2)
 A similar definition of correctness could be defined:

If the learning algorithm A is correct if 
A outputs f* whenever an enough amount of training data 

are fed to A. 
 Mathematically, consider a infinite sequence of training  

data sets  (C1, D1), (C2, D2), (C3, D3), … such that 
C1 C2  C3 C* and 
D1 D2  D3 D* .

Let fi be the output of A for Ci and Di.
Then the algorithm A is correct if for each of  such 
sequences, there exists an N such  that || fi – f* ||  0 for 
all n 
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Estimation and Learning
 Estimation in statistics means to infer the value of 

parameters from examples. 
 We assume an unknown value of . 
 The parameter  affects the distribution of  D(), and 

only finite number of data are coming from the set. 
 We expect that, more data from D(), better conjecture 
^ could be obtained. 

 The conjecture ^ is (statistically) consistent if 
lim n E(^) = 
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Correctness of Learning 
Automata
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Examples on L(M) 
 We assume that, for an unknown automaton M *,
C* is a finite set of positive examples on L(M*) and
D* is a finite set of negative examples on L(M*).

L(M) : a language accepted by 
a finite state automaton M
 a positive example on L(M) : 

< x, +> for  x  L(M)
 a negative example on L(M) : 

< x, > for  x  L(M)

L(M)


positive 
examples

negative examples
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Question
 If we give more and more (negative and positive) 

examples on L(M*) to an learning algorithm, does it  
eventually conjecture the unknown M* ?

 We have to give mathematical definitions of
 giving more and more examples, and 

 or giving examples many enough
 conjecturing M eventually.



L(M)

D*

C*

M^  M
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Assumption 
 Without loss of generality, we may assume that learning 

algorithm takes examples in C* and D* one by one.
 In the situation that both Ci and Di grow, we assume that 

an infinite sequence  of strings marked with either  or 
and some truncation of  corresponds to Ci and Di. 

Example
 : <ab,+>, <aab,+>, <bbb,>, <aaab,+>, <abba,>,… 

Ci = {ab aabaaab
Di = {bbbabba
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Presentations
Definition A presentation of L(M) is a infinite sequence
  < s0, p0 >, < s1, p1 >, < s2, p2 >, …   
 where si  and pi=  or  

 < s, +>  is a positive example
 < s, > is a negative example

 [n] = < s0, p0>, < s1, p1 >, < s2, p2 >, …, < sn1, pn1 >
Definition A presentation  is complete if 

any x  L(M) appears in as a positive example < x, +> 
at least once and 
any x  L(M) appears in as a negative example < x, > 
at least once. 
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L(M) in the limit 
from complete presentations if
for any complete presentation  = x1, x2, x3, ... of L(M) 
and the output sequence M1, M2, M3, ... of A,  there exists 
N such that for all n  N  Mn= M’ and L(M’) = L(M)

 A learning algorithm A BC-identifies L(M) in the limit 
from complete presentations if
for any complete presentation  = x1, x2, x3, ... of L(M) 
and the output sequence M1, M2, M3, ... of A, there exists 
N such that for all n  N  Mn= M’ and L(Mn) = L(M) 

M1, M2, M3, ... x1, x2, x3, ... 
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A Well-known Result on FA

Theorem For every language L(M) accepted by a finite 
state automaton M, there exists a unique minimal  
automaton M’such that L(M)=L(M’), where “minimal” 
means that the number of states in M’ is minimal in such 
automata.
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Embedding the Modified Generate-and-Test 
Algorithm into the Framework

Input  = x1, x2, …:  presentation (an infinite sequence)
Initialize k = 0 /*M0 as an automaton consisting of one state*/
for N = 1,2,… 

 = x1, x2, …, xN
forever
let  k’ = k
for n = 1,2,…, N,

if (xn C and xn  L(k’ )) or (xn D and xn L(Mk’))
replace k with k + 1

if k’ = k
terminate and output Mk 

Assume a procedure of enumerating all FA so that the enumeration 
M0, M1, M2, …, Mi , … satisfies

P(M0)  P(M1)  P(M2)  …  P(Mi)  …
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On the Generate-and-Test Algorithm
Theorem For any finite state automaton M* on , 

the modified generate-and-test algorithm EX-identifies L(M*) in 
the limit from complete presentations.

Proof Let  be an any complete presentation on L(M*). 
Let MN be the output of the algorithm for the input [N]. 
If L(M*)  L(MN), then there must be a string x  

(xL(M*) and x L(MN)) or (xL(M*) and x L(MN)). 
Since is complete, x must be appears in the sequence with the 
sign + if xL(M) or otherwise with – . 
This means that MN must be replaced with another automaton, at 
latest, when x appears in . 
Once the algorithm outputs MN s.t. L(M*) = L(MN), it never 
changes the output afterwards. 
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Data Sets Enough to Output 
Hidden Automata
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Minimal Test Sets

 A set S   is a minimal test set for a FA M if for each 
state q of M, there exists exactly one string x such that  
(q0, x) = qi.

q0

q2q3

b a

a

b

q1

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab} 
and  S2 = {, a, ab, b}.

a

b
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Minimal Test Sets
 Intuitively, a test set gives a “skelton” of the finite state 

automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example Examples of test sets of M are S1 = {, a, aa, aab} 
and  S2 = {, a, ab, b}.
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Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and 

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a 
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example  Both S1 = {, a, aa, 
aab} and S2 = {, a, ab, b} are 
prefix closed.
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Prefix closed Test Sets
 A set of strings S is prefix closed (suffix closed) if and 

only if every prefix (resp. suffix) of every member of S
is also a member of S.

 Intuitively, a prefix closed minimal test set gives a 
“skelton” of the finite state automaton.
 But the set is not sufficient to identify the FA. 

q0

q2q3

b a

a

b

q1

a

b

a

b

Example  Both S1 = {, a, aa, 
aab} and S2 = {, a, ab, b} are 
prefix closed.
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Fixing an Order

 We fix one ordering for listing  elements of a set.

 Example Following the lexicographic ordering, elements of S1
= {, a, aa, aab} is listed as   , a, aa, aab

q0

q2q3

b a

a

b

q1

a

b

a

b
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 Assume an algorithm A which learns FA.
 Assume that we treat only minimal FA.
 A pair (C, D) of sets of examples is characteristic for a 

FA M if for any pair (C’, D’) of examples such that 
C C’  L(M) and D D’ L(M)

the algorithm A returns M.

Characteristics Examples



L(M)

C

C’
D

D’
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a suffix closed set E  *
T : (S  S {0, 1}
 S  { sa | s  S and a   }
 The element of the position (s, w) 

shows whether or not the 
automaton M accepts sw.

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b
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Observation table
 An observation table (S, E, T) : 

S : a prefix closed set S  *
E : a set E  *
T : (S  S {0, 1}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110
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How to construct the table
Input : a minimal FA A
Output : The characteristic set of polynomial size

S : = the minimal test set of A, E := {  }, S’ := S S, 
Generate (S, E, T);
while there exists w, v  S s.t. row(w) = row(v) but

T(wc, e) T(vc, e) for some c  and e  E
E : = E {ae}; 
Generate (S, E, T);

end while
C = { we |  w  S S, e  Eand T(wc, e) 
D = { we |  w  S S, e  Eand T(wc, e) 
return (C, D);
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Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

 S = {, a, aa, aab} 
 S ={a, aa, aaa, aaba

b, ab, aab, aabb} 
 E = {}.  
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Example



 0

a 1

aa 0

aab 1

b 0

ab 1

aaa 1

aaba 1

aabb 0

S

E

S 
q0

q2q3

b a

a

b

q1

a

b

a

b

Because T() = T(aa), check 
whether or not T(a) = T(aaa), 
and 
whether or not T(b) = T(aab).
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Example
 E := E  {b}
 Fill all of the new elements of 

the extended table.  
 b

 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 11

b a

a

b
a

b

a

b

00

0110
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Example
 There is no w and v in the S part s.t.

row(w) = row(v), end the loop.
 C = {a, ab, bb, aaa, aab, aaab, 

aaba, aabab}
D = {, b, aa, abb, aabb, aabbb}

 b
 0 0

a 1 1

aa 0 1

aab 1 0

b 0 1

ab 1 0

aaa 1 1

aaba 1 1

aabb 0 0

S

E

S 
11

b a

a

b
a

b

a

b

00

0110
41



Consistent Table
 An observation table (S, E, T) is consistent if and only if 

for every pair w, v S such that row(w) = row(v), 
row(wc) = row(vc) for any c . 

 Intuitively, in a consistent table, every row in the S part can be 
regarded as one state of an automaton.

Proposition A consistent table T represents an automaton M 
such that, for w S  S  and e  accepts we if and 
only if T(w, e) 
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Characteristic Examples

Theorem Suppose T be the table obtained above method 
from M.  Then the pair (C, D) where

C ={we | w S  S  and e and T(w, e) = 1}
D ={we | w S  S  and e and T(w, e) = 0}

is characteristic w.r.t. the generate-and-test algorithm and 
M.
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The Myhill-Nerode Theorem

Theorem The following three statements are equivalent:
(1) The language L is accepted by some finite automaton.
(2) L is the union of some equivalence classes of a right 
invariant equivalence relation of finite index.
(3) Let equivalence relation RL be defined by: x RL y if and 
only if for all z xz is in L iff yz is in L. Then RL is 
finite index.

 An equivalence relation R is right invariant iff x R y 
implies xz R yz for all z

 The index of equivalence relation R is the number of 
equivalence classes.

44



Why Characteristic Set?

 Let M’ be an automaton the number of whose states is 
minimal and less than that of M.  Then it holds that 

C L(M’) or D L(M’) 
 Proof :  Since S is a test set minimal and prefix closed, we 

can construct a prefix tree T such that there is a one-to-one 
and on-to mapping between the set of nodes in T and the set 
of states in M.  

q0

q2q3

a q1

a

b

If C L(M’) and D L(M’), then some 
node in M’ must corresponds to more than 
two nodes in T. However from Myhill-
Nerode’s theorem, the set E avoids such 
correspondence.
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Example 2
 b

 0 0
a 0 1
ab 1 0
b 0 0

aa 0 0
aba 1 0
abb 0 1

00 10
a

a
01

b

b

b

a
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Example 3

1000

b

a

a
b

0001

b
a

a

 b ab bab
 1 0 0 0

a 0 0 0 1

b 0 1 0 0

ab 0 0 1 0

aa 1 0 0 0

ba 0 0 1 0

bb 1 0 0 0

aba 0 1 0 0

abb 0 0 0 1

S

E

S 

b

00100100
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Example 4

q0

q4

q3

a

bb
b

q1

a

b a
q2

a

b

a

 b a ab
 0 0 0 1

a 0 1 0 0

aa 0 0 0 0

ab 1 1 0 0

b 0 0 1 1

ba 1 1 0 0

bb 0 0 0 0

aaa 0 0 0 0

aab 0 0 0 1

aba 0 0 0 1

abb 1 1 0 0

S

E

S 
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Example 4

q0

q4

q3

a

bb
b

q1

a

b a
q2

a

b

a

 b a ab
 0 0 0 1

a 0 1 0 0

aa 0 0 0 0

ab 1 1 0 0

b 0 0 1 1

ba 1 1 0 0

bb 0 0 0 0

aaa 0 0 0 0

aab 0 0 0 1

aba 0 0 0 1

abb 1 1 0 0

S

E

S 
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