
Computational Learning Theory
Learning Patterns (Monomials)

Akihiro Yamamoto 山本 章博
http://www.iip.ist.i.kyoto-u.ac.jp/member/akihiro/
akihiro@i.kyoto-u.ac.jp

1

Formal Languages
 : a finite set of symbols and called an alphabet
 : the set of all finite strings consisting of the symbols

in
 An empty string is denoted by .
 {}

 A formal language L on is a subset of .
Example

ab
 abaaabbabb aaaaab
L aababb aaabaabbabababbb

2

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit
from positive presentations if
for any positive presentation = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit
from positive presentations if
for any positive presentation = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(n) = L()

1, 2, 3, ... e1, e2, e3, ...

3

Patterns (Monomials)
 Let X be a countable set of variables

 Assuming X =
 A pattern is an element of (X)*

 That is, a pattern is a string consisting of symbols and variables.

Example
abX= {x, y,…}
axbaxbbyaaaxbybxa
 We sometime assume that every variable in a pattern is

indexed, in the ordering of its first occurrence.

abX= {x1, x2, x3,…}
ax1bax1bbx2aaax1bx2bx1a

4

Defining languages with patterns

 A language defined with a pattern is
{ = for some non-empty grounding substitution }

The language is denoted by L().
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbaabb baaaabbaaabbbaabab
bbaab bbabbbbaaabbbaabbbbabab
baaaabbaaabbbaaaaab baaaabb
bbaaabbbaabbbbaaaab bbaaabb5

Substitution (1)

 A substitution is a set of pairs
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and
1, 2, …, n are patterns.

 Applying a substitution to a pattern is replacing every
variable xi in with i simultaneously.
The result is denoted by .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1 abbabbbaaaxbbya2 abyabbayba

6

Substitution (2)

 A substitution ={ (x1,1), (x2,2), …, (xn,n) } is non-
empty if all of 1, 2, …,n are in X)+.

 A substitution grounds a pattern if *. Such
is called a grounding substitution for .

 A substitution ={ (x1, y1), (x2, y2), …, (xn, yn) } is
variable renaming if y1, y2, …, yn are distinct varaibles.
 We regard two patterns equivalent when each one is obtained

from the other by renaming variables.
Examples

Two patterns axb and ayb are equivalent, and they are also
equivalent to ax1b.
Two patterns aaxbxybxa and aaybxbya are equivalent,
and they are also equivalent to aazbwbza and aax1bx2bx1a.

7

Learning pattern languages
Example 1
C = {aababbaaabaabbabababbb
D = {a bbbbbabbabaaaaba babbb

Example 2
C = {baaabbbabb baaaaabbabaabbbbaabab
D = {a bbbbbabbbaaaaba babbb

8

The learning algorithm learn-patterns

 Fix an effective enumeration of patterns on X
1, 2,…,

k = 1, = 1
for n = 1 forever

receive en = sn , bn
while (0 j n

(ej = sj , and sj L()) and
(ej = sj , and sj L())

 = k ; k ++
output k

9

The learning algorithm learn-patterns

 Fix an effective enumeration of patterns on X
1, 2,…,

k = 1, = 1
for n = 1 forever

receive en = sn , bn
while (0 j n

(ej = sj , and sj L()) and
(ej = sj , and sj L())

 = ’ for an appropriate ’; k ++
output k

10

Patterns v.s. Finite state automata

11

Patterns and FAs
 There does not always exist a FA M for a pattern such

that L(M) = L(
 There does not always exist a pattern for a FA M

such that L(M) = L(

A pattern is regular if each variable in occurs only
once in
Example A pattern bxayb is regular, but bxaxb is not.
 For a regular pattern there is a FA M such that L(M) =

L(

12

Regular Expressions (1)
 Mathematically, a regular expression is defined as a

expression constructed of
constants: , , and c for every c in
operators : ・, +, *

Examples Let = {a, b}. Some examples of RE are:
abaa, a + b, a*, (ab)*,
 + abaa + babb, (ab + ba)*,
a((a + b)*)b, (a + b)* (a + b)

13

Regular Expressions (2)
 The language L(E) represented by E is defined as

L() , L() , and L(c) c
L(E F) { wv | wE and vF
L(E + F) L(E) L(F)
L(E*) { wn | wE and n

Examples Let = {a, b}. Some examples of RE are:
L(+ abaa + babb)={, abaa, babb}
L((ab)*)={, ab, abab, ababab,…},
L((ab + ba)*)={, ab, ba, abab, abba, baab,baba,…},
L(a((a + b)*)b)={ab, aab, abb, aaab, aabb, …}
L((a + b)* (a + b))={a, b, aa, ab, ba, bb, …} 14

Regular Expressions and Patterns
 It can be proved that

for every RE E there is a FA M s.t. L(M)=L(E), and
for every FA M there is a RE E s.t. L(E)=L(M).
 There does not always exist a RE E for a pattern such that

L(E) = L(
 There does not always exist a pattern for a FA M such that

L(E) = L(

 For a regular pattern we can construct a RE E such
that L(E) = L(by replacing

every symbol c in with c, and
every variable in with (c1+…+ cn) (c1+…+ cn)*.

Example L(a((a + b)*(a + b)*)b) = L(axb)
15

Learning from Positive Data

16

Learning from Positive Data
Example
C = {aababbaaabaabbabababbb

 In discussing learning from positive data, we
have to define it mathematically, or some simple
(trivial) solutions may always exist.
 The learning algorithm which always return prefix

tree automata.
 The learning algorithm which always return the

automaton accepting any strings.

17

Learning pattern languages
Example 1
C = {aababbaaabaabbabababbb

Example 2
C = {baaabbbabb baaaaabbabaabb

bbaabab

18

Learning Patterns from Positive Data

 Fix an effective enumeration of patterns on X
1, 2,…,

k = 1, = 1
for n = 1 forever

receive en = sn , bn
while (0 j n

(ej = sj , and sj L()) and
(ej = sj , and sj L())

 = ’ for an appropriate ’; k ++
output

19

Positive Presentations

 A presentation of L() is a infinite sequence
consisting of positive and negative example.

 A presentation is positive if consists only of
positive example < s, +> and any positive example
occurs at least once in .

1, 2, 3, ... e1, e2, e3, ...

L()

20

Which patterns should be chosen?
 Intuitively, choose a minimal language which contains

all of the positive examples at the moment.
 That is, avoid over-generalization!

L(i)

L()
the set of positive examples.

21

Analysis of Patterns (1)
Lemma 1 For every string s, there are only finite number

of pattern languages containing s.
Proof. If s L(), then |s| ||.

Example The languages containing s = aab are
L(aab),
L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),
L(xyb), L(xay), L(axy), L(xxy), L(xy),
L(xyz),

22

Hasse Diagram
L(x)

L(xy)

L(xb) L(xyz) L(ax)

L(xyb) L(xxy) L(xay) L(axy)

L(xab) L(axb) L(xxb) L(aax)

L(aab)
23

Analysis of Patterns (2)
Example = axxbbyaa

Laxxbbyaa
aaabbaaaaaabbbaa abbbbaaa abbbbbaa,

aaaaabbaaaaaaaabbbaa aababbbaaa
aababbbbaa,…, aabaaabaabbbbbababaa,…}

 Using examples as long as :
aaabbaaaaaabbbaa abbbbaaa abbbbbaa

{(x,a), (y,a)} {(x,a), (y,b)} {(x,b), (y,a)} {(x,a), (y,b)}

We can know that the 2nd, 3rd, The variable at the 6th
and 6th positions must be position is different from
variables. those at the 2nd and 3rd. 24

Analysis of Patterns (3)
 Any language L(’) containing the four strings must be a

superset of L().

aaabbaaaaaabbbaa abbbbaaa abbbbbaa
{(x,a), (y,a)} {(x,a), (y,b)} {(x,b), (y,a)} {(x,a), (y,b)}

 If ’ and are of same length, ’ has more variables than
 If ’ is shorter than , ’ has at least one variable with which

some substring of longer than 2 must be replaced.

25

Characteristic Set of L()

 Let be a pattern which contains variables x1, x2, ..., xn.
Consider the following substitutions:

a = {(x1, a), (x2, a), ..., (xn, a)},
b = {(x1, b), (x2, b), ..., (xn, b)},
1 = {(x1, a), (x2, b), ..., (xn, b)},
…
n = {(x1, b), (x2, b), ..., (xn, a)}

 The set {pa, pb , p1, pn} is a characteristic set of
L().

26

Anti-Unifcation of Strings
 For a set C of stings of same length

s1 = c11 c12…c1i …c1k

s2 = c21 c22…c2i…c2k

…
sn = cn1 cn2…cnj…cnk

the anti-unification of C is a pattern
 = c11c21…cn1c12c22…cn2c1kc2k…cnk

where
c1c2…cn= c if c1 = c2 = … = cn = c

x(c1c2…cn) otherwise.
and c1c2…cnis the “index” of c1c2…cn. 27

In Theoretical Form
Lemma 2 Let 1, 2,…,n be patterns. If the language

L(k) is minimal in {L(1), L(2),…, L(n) }, then k is
one of the longest patterns in the list.

Lemma 3 Let 1 and 2 be patterns of same length. Then
L(1) L(2) if and only if 2=1.

Note If we do not assume 1 and 2 be patterns of same
length, then it is not decidable whether or not
L(1) L(2).

28

Which pattern should be chosen?
 Let C be a set of (positive) examples
1. Select all shortest examples.
2. Look for one of the minimal patterns between x

(a singleton variable) and the anti-unifier of the
shortest examples, and return it.

Note: If we only follow the identification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples
but this might not seem “learning”.

29

Positive and Negative examples

L() : a language represented
with a pattern
 a positive example on L() :

< s, +> for x L()
a negative example on L() :

< s, > for x L()

e1, e2, e3, ...

L()

positive
examples

negative examples

30

Positive presentations

 A presentation of L() is a infinite sequence
consisting of positive and negative example.

 A presentation is positive if consists only of
positive example < s, +> and any positive example
occurs at least once in .

1, 2, 3, ... e1, e2, e3, ...

L()

31

Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit
from positive presentations if
for any positive presentation = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit
from positive presentations if
for any positive presentation = e1, e2, e3, ... of L() and
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N n= ’ and L(n) = L()

1, 2, 3, ... e1, e2, e3, ...

32

 A learning algorithm A EX-identifies a class C of
languages in the limit from psoitive presentations if
A EX-identifies every language in C in the limit from
positive presentations.

 A learning algorithm A BC-identifies a class C of
languages in the limit from positive presentations if
A BC-identifies every language in C in the limit from
positive presentations.

Identification in the limit [Gold]

33

Theorem The revised algorithm of Learn-pattern with the
minimal language strategy EX-identifies the class of all
pattern languages in the limit from positive presentations.

 The minimal language strategy means that when revising
conjecture a pattern generating a minimal language for
positive data is chosen as the “appropriate” pattern.

Identification of patterns

34

Linear Patterns
 When we are learning only linear patterns, the shortest

linear patterns can be found by using the dynamic
programming.
 The algorithm is a modification of that for finding LCS

“longest common subsequences” or edit distance.
b ba a b

a

b

b

35

A Negative Result
.Theorem [Gold] There is no learning algorithm which

identifies any regular language from positive data.

 Note that a regular language is a formal language which
is accepted by a finite state automaton. It is also
represented in a regular expression.

Theorem [Gold] There is no learning algorithm which
identifies any regular expression from positive data.

36

A Negative Result (2)

e1, e1, …, e 2,...

N1+1

 We construct a positive presentation of L in the
following manner.

 Let e1 be a string in L. Since the set {e1 } is also in C and
A must identify {e1}. So the first N1 examples of are
all E1 , until “A identifies {e1}.”

h1,h2,h3,..., g1, g1, …

N1 n > N1 hn = g1 and L(g1) = {e1}

37

A Negative Result (3)
 Let the (N1+1)-th example be e2 which is different from

e1 .
 Since C contains {e1, e2}, the learning algorithm A

identifies {e1, e2} in the limit.

N1 n > N2 > N1 gn = g2 and {e1, e2}

e1,e1,... e2,..., e3,...

N1+1

h1, h2,..., g1,...,
g2 ,...,

N2+1

38

A Negative Result (4)
 Let the (N2+1)-th example be e3 which is different from

both of e1 or e2.
 Since C contains {e1, e2 ,e3}, A identifies {e1, e2 , e3} in

the limit.

N3 n >N3 > N2> N1 hn = g3 and L(g3)={E1, E2 , E3}

 The language L ={e1, e2 , e3 , e4,…} is a infinite and A
cannot identify L.

39

Reference
 M. Gold : Language Identification in the Limit,

Information and Control, 10, 447-474 (1967).

 D. Angulin : Inductive Inference of Formal
Languages from Positive Data, Information and
Control, 45, 117-135 (1980).

40

Defining languages with patterns

 A language defined with a pattern is
{ = for some non-empty grounding substitution }

The language is denoted by L().
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbbabb baabb bbaab
baaaabbaaabbbaabab babbbb
bbaaabbbaabbbbababbbbbbb

41

