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Formal Languages
  : a finite set of symbols and called an alphabet
  : the set of all finite strings consisting of the symbols 

in 
 An empty string is denoted by .
   {}

 A formal language L on is a subset of  .
Example

ab
  abaaabbabb aaaaab
L aababb aaabaabbabababbb
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit 
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and 
the output sequence 1, 2, 3, ... of A,  there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit 
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and 
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N  n= ’ and L(n) = L() 

1, 2, 3, ... e1, e2, e3, ...
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Patterns (Monomials)
 Let X be a countable set of variables

 Assuming  X =  
 A pattern  is an element of ( X)*

 That is, a pattern is a string consisting of symbols and variables.

Example
abX= {x, y,…}
axbaxbbyaaaxbybxa
 We sometime assume that every variable in a pattern is 

indexed, in the ordering of its first occurrence.

abX= {x1, x2, x3,…}
ax1bax1bbx2aaax1bx2bx1a
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Defining languages with patterns

 A language defined with a pattern  is 
{ = for some non-empty grounding substitution }

The language is denoted by L(). 
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbaabb baaaabbaaabbbaabab
bbaab bbabbbbaaabbbaabbbbabab
baaaabbaaabbbaaaaab baaaabb
bbaaabbbaabbbbaaaab bbaaabb5



Substitution (1) 

 A substitution is a set of pairs 
 ={ (x1,1), (x2,2), …, (xn,n) }

where x1, x2, …, xn are distinct variables and 
1, 2, …, n are patterns. 

 Applying a substitution  to a pattern  is replacing every 
variable xi in  with i simultaneously. 
The result is denoted by  .

Example
1 ={ (x, bba), (y, ba) }
2 ={ (x, bya), (y, ayb) }

bxaxb1 bbbaabbabbxaxb2 bbyaabyab
axbbya1  abbabbbaaaxbbya2 abyabbayba
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Substitution (2) 

 A substitution  ={ (x1,1), (x2,2), …, (xn,n) } is  non-
empty if all of 1, 2, …,n are in  X )+.

 A substitution grounds a pattern if  *. Such 
is called a grounding substitution for .

 A substitution  ={ (x1, y1), (x2, y2), …, (xn, yn) } is 
variable renaming if y1, y2, …, yn are distinct varaibles.
 We regard two patterns equivalent when each one is obtained 

from the other by renaming variables.
Examples

Two patterns axb and ayb are equivalent, and they are also 
equivalent to ax1b.
Two patterns aaxbxybxa and aaybxbya are equivalent, 
and they are also equivalent to aazbwbza and aax1bx2bx1a.
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Learning pattern languages
Example 1
C = {aababbaaabaabbabababbb 
D = {a bbbbbabbabaaaaba babbb

Example 2
C = {baaabbbabb baaaaabbabaabbbbaabab
D = {a bbbbbabbbaaaaba babbb
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The learning algorithm learn-patterns 

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1 
for  n = 1  forever

receive en = sn , bn 
while ( 0  j  n

(ej = sj ,   and sj  L()) and 
(ej = sj ,   and sj  L())

 = k ; k ++
output k
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The learning algorithm learn-patterns 

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1 
for  n = 1  forever

receive en = sn , bn 
while ( 0  j  n

(ej = sj ,   and sj  L()) and 
(ej = sj ,   and sj  L())

 = ’ for an appropriate ’; k ++
output k
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Patterns v.s. Finite state automata
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Patterns and FAs
 There does not always exist a FA M for a pattern  such 

that L(M) = L(
 There does not always exist a pattern  for a FA M

such that L(M) = L(

A pattern is regular if  each variable in  occurs only 
once in 
Example A pattern bxayb is regular, but bxaxb is not.
 For a regular pattern  there is a FA M such that L(M) = 

L(
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Regular Expressions (1)
 Mathematically, a regular expression is defined as a 

expression constructed of 
constants: , , and c for every c in 
operators :  ・, +, *

Examples Let = {a, b}.  Some examples of RE are:
abaa, a + b, a*, (ab)*, 
 + abaa + babb, (ab + ba)*,
a((a + b)*)b, (a + b)* (a + b)
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Regular Expressions (2)
 The language L(E) represented by E is defined as

L() ,  L() , and L(c) c
L(E F) { wv | wE and  vF
L(E + F) L(E)  L(F)
L(E*) { wn | wE and n 

Examples Let = {a, b}.  Some examples of RE are:
L( + abaa + babb)={, abaa, babb}
L((ab)*)={, ab, abab, ababab,…}, 
L((ab + ba)*)={, ab, ba, abab, abba, baab,baba,…},
L(a((a + b)*)b)={ab, aab, abb, aaab, aabb, …}
L((a + b)* (a + b))={a, b, aa, ab, ba, bb, …} 14



Regular Expressions and Patterns
 It can be proved that 

for every RE E there is a FA M s.t. L(M)=L(E), and
for every FA M there is a RE E s.t. L(E)=L(M). 
 There does not always exist a RE E for a pattern  such that 

L(E) = L(
 There does not always exist a pattern  for a FA M such that 

L(E) = L(

 For a regular pattern we can construct a RE E such 
that L(E) = L( by replacing 

every symbol c in  with c, and 
every variable in with (c1+…+ cn) (c1+…+ cn)*.

Example L(a((a + b)*(a + b)*)b) = L(axb)
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Learning from Positive Data
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Learning from Positive Data
Example
C = {aababbaaabaabbabababbb 

 In discussing learning from positive data, we 
have to define it mathematically, or some simple 
(trivial) solutions may always exist.
 The learning algorithm which always return  prefix 

tree automata.
 The learning algorithm which always return the 

automaton accepting any strings.
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Learning pattern languages
Example 1
C = {aababbaaabaabbabababbb 

Example 2
C = {baaabbbabb baaaaabbabaabb

bbaabab
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Learning Patterns from Positive Data

 Fix an effective enumeration of patterns on  X 
1, 2,…,

k = 1,  = 1 
for  n = 1  forever

receive en = sn , bn 
while ( 0  j  n

(ej = sj ,   and sj  L()) and
(ej = sj ,   and sj  L())

 = ’ for an appropriate ’; k ++
output 
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Positive Presentations

 A presentation of L() is a infinite sequence 
consisting of positive and negative example. 

 A presentation  is positive if  consists only of 
positive example < s, +> and any positive example 
occurs at least once in . 

1, 2, 3, ... e1, e2, e3, ...


L()
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Which patterns should be chosen?
 Intuitively, choose a minimal language which  contains 

all of the positive examples at the moment.
 That is, avoid over-generalization!

L(i)

L()
the set of positive examples.
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Analysis of Patterns (1)
Lemma 1 For every string s, there are only finite number 

of pattern languages containing s. 
Proof. If s L(), then |s|  ||. 

Example The languages containing s = aab are
L(aab),
L(xab), L(axb), L(aax), L(xxb), L(xb), L(ax), L(x),
L(xyb), L(xay), L(axy), L(xxy), L(xy),
L(xyz), 
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Hasse Diagram
L(x)

L(xy)

L(xb) L(xyz)                   L(ax)

L(xyb)          L(xxy)           L(xay)         L(axy)

L(xab)          L(axb)           L(xxb)         L(aax)

L(aab)
23



Analysis of Patterns (2)
Example  = axxbbyaa

Laxxbbyaa
aaabbaaaaaabbbaa abbbbaaa abbbbbaa, 

aaaaabbaaaaaaaabbbaa aababbbaaa
aababbbbaa,…, aabaaabaabbbbbababaa,…}

 Using  examples as long as  : 
aaabbaaaaaabbbaa abbbbaaa abbbbbaa

{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,a), (y,b)}

We can know that the 2nd, 3rd,        The variable at the 6th  
and 6th positions must be                   position is different from 
variables. those at the 2nd and 3rd.            24



Analysis of Patterns (3)
 Any language L(’) containing the four strings must be a 

superset of L().

aaabbaaaaaabbbaa abbbbaaa abbbbbaa
{(x,a), (y,a)} {(x,a), (y,b)}  {(x,b), (y,a)}  {(x,a), (y,b)}

 If ’ and  are of same length, ’ has more variables than 
 If ’ is shorter than , ’ has at least one variable with which 

some substring of longer than 2 must be replaced. 
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Characteristic Set of L()

 Let  be a pattern which contains variables x1, x2, ..., xn.  
Consider the following substitutions:

a = {(x1, a), (x2, a), ..., (xn, a)},
b = {(x1, b), (x2, b), ..., (xn, b)},
1 = {(x1, a), (x2, b), ..., (xn, b)},
…
n = {(x1, b), (x2, b), ..., (xn, a)}

 The set {pa, pb , p1, pn} is a characteristic set of 
L().
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Anti-Unifcation of Strings 
 For a set C of stings of same length

s1    = c11 c12…c1i …c1k

s2 = c21 c22…c2i…c2k

…
sn = cn1 cn2…cnj…cnk

the anti-unification of C is a pattern 
 = c11c21…cn1c12c22…cn2c1kc2k…cnk

where
c1c2…cn=     c if c1 = c2 = … = cn = c

x(c1c2…cn) otherwise.
and  c1c2…cnis the “index” of c1c2…cn. 27



In Theoretical Form
Lemma 2 Let 1, 2,…,n be patterns. If the language 

L(k) is minimal in {L(1), L(2),…, L(n) }, then k is 
one of the longest patterns in the list.

Lemma 3 Let 1 and 2 be patterns of same length. Then  
L(1)  L(2) if and only if 2=1. 

Note If we do not assume 1 and 2 be patterns of same 
length, then it is not decidable whether or not 
L(1)  L(2).
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Which pattern should be chosen?
 Let C be a set of (positive) examples 
1.  Select all shortest examples.
2.  Look for one of the minimal patterns  between x

(a singleton variable) and the anti-unifier of the 
shortest examples, and return it. 

Note: If we only follow the identification-in-the-
limit criterion, the second can be simplified as

2’. Return the anti-unifier of the shortest examples
but this might not seem “learning”. 
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Positive and Negative examples

L() : a language represented
with a pattern 
 a positive example on L() : 

< s, +> for  x  L()
a negative example on L() : 

< s, > for  x  L()

e1, e2, e3, ... 

L()



positive 
examples

negative examples
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Positive presentations

 A presentation of L() is a infinite sequence 
consisting of positive and negative example. 

 A presentation  is positive if  consists only of 
positive example < s, +> and any positive example 
occurs at least once in . 

1, 2, 3, ... e1, e2, e3, ...


L()
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Identification in the limit [Gold]

 A learning algorithm A EX-identifies L() in the limit 
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and 
the output sequence 1, 2, 3, ... of A,  there exists N
such that for all n > N n= ’ and L(’) = L()

 A learning algorithm A BC-identifies L() in the limit 
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L() and 
the output sequence 1, 2, 3, ... of A, there exists N
such that for all n > N  n= ’ and L(n) = L() 

1, 2, 3, ... e1, e2, e3, ...
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 A learning algorithm A EX-identifies a class C of 
languages in the limit from psoitive presentations if
A EX-identifies every language  in C in the limit from 
positive presentations. 

 A learning algorithm A BC-identifies a class C of 
languages in the limit from positive presentations if
A BC-identifies every language  in C in the limit from 
positive presentations.

Identification in the limit [Gold]
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Theorem The revised algorithm of Learn-pattern with the  
minimal language strategy EX-identifies the class of all 
pattern languages in the limit from positive presentations. 

 The  minimal language strategy means that when revising 
conjecture  a pattern generating a minimal language for 
positive data is chosen as the “appropriate” pattern. 

Identification of patterns
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Linear Patterns
 When we are learning only linear patterns, the shortest 

linear patterns can be found by using the dynamic 
programming. 
 The algorithm is a modification of that for finding LCS 

“longest common subsequences” or edit distance.
b ba a b

a

b

b
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A Negative Result
.Theorem [Gold] There is no learning algorithm which 

identifies any regular language from positive data. 

 Note that  a regular language is a formal language which 
is accepted by a finite state automaton.  It is also  
represented in a regular expression.

Theorem [Gold] There is no learning algorithm which 
identifies any regular expression from positive data. 
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A Negative Result (2)

e1, e1, …, e 2,...

N1+1

 We construct a positive presentation  of L in the 
following manner.  

 Let e1 be a string in L. Since the set {e1 } is also in C and 
A must identify {e1}.  So the first N1 examples of  are 
all E1 , until “A identifies {e1}.”

h1,h2,h3,..., g1, g1, …

N1 n > N1 hn = g1 and L(g1) = {e1}
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A Negative Result (3)
 Let the (N1+1)-th example be e2 which is different from

e1 .
 Since C contains {e1, e2}, the learning algorithm A 

identifies {e1, e2} in the limit.

N1 n > N2 > N1 gn = g2 and {e1, e2}

e1,e1,... e2,..., e3,...

N1+1

h1, h2,..., g1,...,
g2 ,..., 

N2+1
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A Negative Result (4)
 Let the (N2+1)-th example be e3 which is different from

both of e1 or e2.
 Since C contains {e1, e2 ,e3}, A identifies {e1, e2 , e3} in 

the limit.

N3 n >N3 > N2> N1 hn = g3 and L(g3)={E1, E2 , E3}

 The language L ={e1, e2 , e3 , e4,…} is a infinite and A
cannot identify L. 
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Defining languages with patterns

 A language defined with a pattern  is 
{ = for some non-empty grounding substitution }

The language is denoted by L(). 
Example

Laxb aababbaaabaabbabababbb
Layb aababbaaabaabbabababbb
Lbxaxb baaabbbabb

baaaaabbabaabbbbaabab bbbabbb
baaaaaaab

Lbxayb baaabbbabb baabb bbaab
baaaabbaaabbbaabab babbbb
bbaaabbbaabbbbababbbbbbb
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