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Machine Leaning from 
String Data
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Alphabets and Stings
  : a finite set of symbols and called an alphabet
  : the set of all finite strings (sequences) consisting of 

the symbols in 
 An empty string is denoted by .
   {}
 The size of a string w, denoted by | w |, is the total number of 

symbols occurring in w. 
Examples
 ab
  abaaabbabb aaaaab

aaaaabab
 ATCG
  ATCGAAAGTAAAA 
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Question
 Assume that we have provided

C  : a finite set of positive examples, and 
D : a finite  set of negative examples 
such that C D = .

 Develop a computer program to find a rule 
which accepts all positive examples and rejects 
all negative examples.
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 It could hold that every string in C1 starts with a and 
end with b.

Example 2
C2 = {ba bababa bababababababababa
D2 = {a bbbbbabbbaaaaba babbb

 It might hold that every string in C2 is made of some 
repetition of ba.
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Examples
Example 3
C3 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D3 ={a bbbbbabbbaaaaba babbb

 Every string in C3 consists of two strings: The first 
string consists only of  a’s, and the second consists of 
the same number of b’s.

Example 4
C4 = {aa abaabaaaaaaaabaaababab
D4 = {a bbbbbabbbbbbbbba babbb

 In every string in C4 has more than two a’s.
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The First Problem 
 What is the grammar and vocabulary with which 

we represent the rule to distinguish C and D?
 In the linear classification case, the rule to be found 

is represented in the form of (w, x) + c s.t.
x C  (w, x) + c  0 
x D  (w, x) + c  0  

 The region including C is 
represented with an 
inequation

(w, x) + c  0 
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Solutions to the Problem
 We adopt some representation method with which 

we  represent a subset of  which includes C.
 Since the rule found by some learning mechanism is 

expected to be “general”, the set should be sufficiently 
large.
Rules should not overfit the examples.

 A rule which represents a rule is sometimes called a 
predicate.
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Examples
Example 1
C1 = {ab aababaabaaabaaaabbbbabab
D1 = {a bbbbbabbabaaaaba babb

 The rule which is output by a learning machine 
would represent a set

L1 = {ab aababb aaabaabbabab abbb
aaaab aaabb abaab abbbb
aaaabbbb
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Examples
Example 3
C2 ={aaabbb abaaaabbbbaaaaabbbbbaabb
D2 ={a bbbbbabbbaaaaba babbb

 You may imagine that the rule which is output by 
a learning machine would represent a set

L2 = {ab aabbaaabbbaaaabbbb aaaaabbbbb
aaaaaabbbbbb
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Formal Languages
 Every subset of  is called a formal language. 
Example

ab  abaaabbabb aaaaab
L1 aababbaaabaabbabababbb
L2 abaabbaaabbbaaaabbbb



L1 L2

aabb
aab abb

aaab abab

ab

abbb

aaabbb
aaaabbbb

ba

abaaa

baa

a b

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An Instance of the Abstract Learning
 A language L which contains C (yes) and excludes D 

(no) is to be learned
 The language L  is represented by some predicate p

with some representation f . 
 Let L(f )={x   | pf (x) } for a predicate pf defined 

with f 
Then the search space (version space) is

L = {L(f ) | f  H }.
where H is the set of representations f. 

 The training examples are provided as the sets C and D.
 A learning algorithm is provided. 
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An Instance of the Abstract Learning
 As an instance of the formulation 

argminfH ( x Data Loss(f, x) +  P(f ))
learning languages can be formalized with  letting 

H : the set of all representation,
f : an representation,
Data : a finite set of pairs x = <w, s> of a string with 
a sign such that s = + if w C and s =  if w D,

0  if     x = <w, + > and w L(f )
Loss(f, x) = or x = <w,  > and w  L(f ),

1, otherwise.
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Three Types of Representation
 We introduce some predicates which distinguishes 

strings in a formal language, and exclude strings outside 
of the formal language.

x C  x L()
x D  x  L()

 The predicates are categorized into three types:
 Algorithms for recognizing formal languages
 Monomials just like in algebra
 Grammar for defining formal languages

 Analogy to the cases of numbers would be helpful to 
understand the first and the second. 14



Polynomials as Predicates
 Let us consider sets of natural numbers.

 Natural numbers are 0, 1, 2,... and N denotes the set of all natural numbers.

 For example, let us consider the sets
F = { xN : x = 2y  for some yN }
P = { xN : x = 2y +1 for some yN }

 Then 
F = {2×0, 2×1, 2×2, 2×3,…} = {0, 2, 4, 6, …} 
P = {2×0+1, 2×1+1, 2×2+1, 2×3+1,…} = {1, 3, 5, 7, …} 
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Polynomials as Predicates
 Let us consider sets of natural numbers.

 Natural numbers are 0, 1, 2,... and N denotes the set of all natural numbers.

 For example, let us consider the sets
E = { xN : x is an even number}
O = { xN : x is an odd number}

What is “even”?  What is “odd”?

 To see whether a number x is an even number or odd, apply the 
following algorithm:

Step 1 : Divide x with 2 and see the remainder y.  
Step 2 : If y is equal to 0, then answer “ x is an even number”

else answer “ x is an even number”
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Algorithms and Automata
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 A. Turing: On computable numbers, with an 
application to the Entscheidungsproblem, 1936.
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Observation by Turing (1)

 Computing is normally done by writing certain 
symbols on paper. We may suppose this paper 
is divided into squares like a child's arithmetic 
book. 

... 
 I assume then that the computation is carried 

out on one-dimensional paper, i.e. on a tape 
divided into squares. 
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Observation by Turing(2)
 The behaviour of the computer at any moment is 

determined by the symbols which he is 
observing and his “state of mind” at that 
moment. 

20



Observation by Turing(3)
 We will also suppose that the number of states 

of mind which need be taken into account is 
finite.
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Observation by Turing(4)
(a) Changes of the symbol on one of the observed 

squares.
(b) Changes of one of the squares observed to 

another square within L squares of one of the 
previously observed squares. 

A. A possible change (a) of symbol together with 
a possible change of state of mind.

B. A possible change (b) of observed squares, 
together with a possible change of state of 
mind. 
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Dividing x by 2  (1-1)
B a a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-2)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L
-/- L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R
-/-, R

B/B, L

-/B, R

-/a, R
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Dividing x by 2  (1-3)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-4)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-5)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-6)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-7)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-8)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-9)
B B a a a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-10)
B B a a a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-11)
B B a a a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-12)
B B B a a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-13)
B B B a a B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-14)
B B B a a B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-15)
B B B a a B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-16)
B B B B a B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-17)
B B B B a B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-18)
B B B B B B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (1-19)
B B B B B B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-1)
B a a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-2)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-3)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-4)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-5)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-6)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-7)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R

48



Dividing x by 2  (2-8)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-9)
B B a a a a a a B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-10)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-11)
B B a a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-12)
B B B a a a a B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R

53



Dividing x by 2  (2-13)
B B B a a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-14)
B B B a a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-15)
B B B a a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-16)
B B B B a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-17)
B B B B a a B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-18)
B B B B a B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-19)
B B B B a B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-20)
B B B B B B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Dividing x by 2  (2-21)
B B B B B B B B B B B

a/B, R
q0 q1 q2

a/a, R

q5q6

a/a L

B/B, R
q4

a/a, L

q3

a/B, L

q7

a/a, R

B/B, L

B/B, R

B/B, R
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Strings and Automata
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A Simple Instance of TM
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

Machines of this type are called finite state automata.

 A change of observed 
squares left to right 
only, together with a 
possible change of 
state of mind. 

 No change of symbols 
in the squares. 
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A Simple Restriction
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

L() aababbaaabaabbabab

 The input string is 
accepted by the 
finite state 
automaton iff the 
transition ends at a 
finial state.

 The set of all strings 
accepted by the 
automaton is a 
formal language. 
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A Simple Restriction
a a b a b a a a b B B

q0

q2q3

b

a,b

a b

a
a

b

q1

 The automaton is 
represented in the 
form of a table. 

F a b
q0 q1 q3

q1 q1 q2

q2 v q1 q2

q3 q3 q3

66



Representation of Finite State Automata  

 Mathematically, a finite state automaton is represented 
in the form  M=(, S, , s0, F)
where
 is the alphabet,
S is a set of states,
 : S×  S is a transition function 

represented as a transition table,
q0  S is an initial state,
F  S is a set of final states.

F a1 … an

q0

…

qm
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Finite Automata of One State

q0 q1a,b a,b

M0 M1

F a b
q0 q0 q0

F a b
q0 v q0 q0

L(M0) =  L(M0) = 
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Exercise 1

q0
b

a
b

a q0
b

a, b
aq1

q1

F a b
q0 q0 q1

q1 v q1 q0

F a b
q0 q0 q1

q1 v q1 q1

 Explain the languages in English accepted by the 
following FAs.
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Exercise 2
 For each of the following languages, give an FA 

which accepts it.
L1 = { w | w starts with a and ends with b}
L2 = { w | w is constructed by repeating ba more 

than once}
L4 = { w | w has more than two a’s }
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Pumping Lemma
Theorem If a language L is accepted by a finite 
state automaton, there is N  0 such that for every 
string w with | w | N in L can be divided into 
three strings w = xyz so that  

y  , | xz |  N, and xy…yz  L for all k  0.

Example
For L1 = { w | w starts with a and ends with b}, N = 3, and 
x = a, z = b for every w with  | w | 3. 
For L2 = { w | w is constructed by repeating ba more than
once}, N = 4, x = b, z = a for every w with  | w | 4. 

k
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Application of Pumping Lemma
 No finite automaton accepts the language 

L3 = { w | w =  anbn n .
 cn means  c c…c . 

n
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