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GCD and the Euclidian Algorithm

 In mathematics, the greatest common divisor (GCD) of 
two or more integers, which are not all zero, is the 
largest positive integer that divides each of the integers. 
For example, the gcd of 8 and 12 is 4.     [Wikipedia]

 By the Euclidian algorithm, gcd(m, n) can be computed
efficiently.

gcd(m, 0) = m
gcd(m, n) = gcd(n, m mod n)

Example
gcd(34, 21)=gcd(21, 13)=gcd(13, 8)=gcd(8, 5)=gcd(5, 3) 

=gcd(3, 2)=gcd(3, 2)=gcd(2, 1)=gcd(1, 1)=gcd(1, 0)=0
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GCD and Learning 
A class of languages  in N : 

C = {L(m) | m  N } 
L(m) = {01…10 | n mod m = 0}

L(m) = {n  N |  n mod m = 0}

A class of languages  in Z : 
C = {L(m) | m  N } 
L(m) = {1…1 | n mod m = 0}  {01…1 | n mod m = 0}

L(m) = {n  Z |  | n | mod m = 0}

n

n n



Positive presentation
72, 48, 60, …,12,…

Conjecture
72, 24, 12,…,12,…

GCD and Learning 

L(m) Compute the GCD 
of e1, e2, …, ek
with the Euclidean 
Algorithm

C

L(m)
L(m’)

 A class of languages : 
C = {L(m) | m  N } 
L(m) = {01…10 | n mod m = 0}



C4: Finite thickness
 A class C of languages has the finite thickness 

property if for all w *  only a finite number of 
languages contains w, 

Theorem [Angluin] If a class C of languages has the 
finite thickness, C is identifiable in the limit from 
positive data. 

Note : Even if C has the finite thickness property, 
 U might not have the same property. 



Identification in the limit [Gold]

 A learning algorithm A EX-identifies L(g) in the limit 
from positive presentations if
for any positive presentation  = e1, e2, e3, ... of L(g) and 
the output sequence g1, g2, g3, ... of A,  there exists N
such that for all n > N gn= g’ and L(g’) = L(g) 

 A learning algorithm A EX-identifies a class C of 
languages in the limit from positive presentations if
A EX-identifies every language  in C in the limit from 
positive presentations. 

g1, g2, g3, ... e1, e2, e3, ...



Proving that C is identifiable
 From the finite thickness condition:

The class C = {L(m) | m  N } has the finite thickness 
property.

 From a property of natural numbers and the property
GCD(e1, e2, …, ek ) GCD(e1, e2, …, ek, ek+1 )

The property is :
Let  a1, a2, …, an ,… be a infinite sequence of 
natural numbers satisfying that

an   an+1 for all n  1.
Then there is N  1 such that an  an+1 for all n  N.



Generalizing the Setting 

 The class C = {L(m) | m  N } is defined with 
multiplication 

 The Euclidean Algorithm as the learning machine is 
based on 

computing remainders of two integers, 
which can be constructed of division and subtraction,  and 
division of two integers can be implemented with 
multiplication and subtraction. So the Euclidean Algorithm 
can be implemented with 

multiplication, subtraction (the inverse of addition).
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Monomimial Case

 Consider the case U = {xm yn | m, n  N }
L( xk yl) ={  xk+a yl +b a, b N }
Then the class C = { L( xm yn) | m, n  N} is identifiable 

from positive representation. 



Monomial and Hasse Diagram
xm yn    (m, n)

n

m

(2, 6)

(5, 3)



Dicksonの補題(2)
xm yn   (m, n)



Rings
Ring R : an algebraic structure with operations of addition + and 
multiplication . 
 The addition must satisfy the followings:

 (a + b) + c = a + (b + c) for all a, b, c in R (+ is 
associative).

 a + b = b + a for all a, b in R (+ is commutative).
 There is an element 0 in R such that a + 0 = a for all a in R

(0 is the additive identity).
 For each a in R there exists −a in R such that a + (−a) = 0 

(−a is the additive inverse of a).
 The multiplication must satisfy the followings: 

 (a b) c = a (b c) for all a, b, c in R ( is associative).
 There is an element 1 in R such that a 1 = a and 1 a = a

for all a in R (1 is the multiplicative identity).



Rings (cnt’d)
 The addition and multiplication must satisfy the followings:

 a (b + c) = (a b) + (a c) for all a, b, c in R
(left distributivity).

 (b + c) a = (b a) + (c a) for all a, b, c in R
(right distributivity).

 If a ⋅ b = b ⋅ a for all a, b in R (⋅ is commutative), R is called a 
commutative ring.

Examples other than the set of integers Z:
 the set of all n-by-n matrices whose elements are Q (or R).
 Q[x1, x2,…, xn] (R[x1, x2,…, xn]) : the set of all polynomials of 

variables x1, x2,…, xn whose coefficients are in Q (or R).



Polynomials(1)
 Polynomials containing only one variable x (with 

coefficients in Q ) have similar properties to integers.
 Q[x] is a ring, moreover, division and reminder of two 

polynomials are defined, the GCD of two polynomials is 
defined and computed by Euclidian algorithm.

Example In Q[x] the GCD of x3 + 2x2 +x and x2 + 3x +2 
is computed as follows:

( x3 + 2x2 +x)  (x2 + 3x +2 ) = x …  x2  x
( x2 + 3x +2 )  ( x2  x) = 1 … 2x + 2
( x2  x) ( 2x +2 ) =  x  …0
GCD(x3 + 2x2 +x, x2 + 3x +2 ) = k(x +1)



Polynomials(2)
 For polynomials containing more than one variables (with 

coefficients in Q) we cannot have simple  extension of  
the operations for Q[x].

Example In Q[x, y] the division of two polynomials is not 
unique:

( x2y3 + x2 )  ( xy + y3 ) = xy2  y4 … x2 + y7

( x2y3 + x2 )  ( y3 + xy ) = x2 …  x3y + x2

 To keep the uniqueness of the division and reminder, we 
fix the ordering of monomials.

Example  Both of the expressions  x2y3 + x2 and xy + y3

follow the lexicographic order , but y3 + xy does not.



Ideals (1)
 In algebra, the set of integers

L(m) =  {n  Z |  | n | mod m = 0}
=  { km |   k  Z } 

is called the ideal generated by m and denoted by m
 This can be defined for any commutative ring R:

a{ ra |   r  R } 
and extended as
a1, a2,..., an{ r1a1+r2a2+... + rnan | r1, r2,..., rn  R },
which is called the ideal generated by {a1, a2,..., an}



Ideals (2)
 The set I = a1, a2,..., anhas the following properties:

0 I
If  b1 I and b2I, b1 + b2 I
If  b I and r R, r b I

 Any subset of R which satisfies the property above is 
called an ideal.

 For an ideal I, if there exists a set {b1, b2,..., bn}  R 
such that I = b1, b2,..., bn, the set is called a basis of I.
 The basis of I is not unique.



Ideals (3)
 Example For Z and Q[x], it is known that

m1, m2,..., mnGCD(m1, m2,..., mn)
 This example means that GCD is the standard basis of
m1, m2,..., mn



Note on Groebner Bases
 The concept Groebner bases is one of foundations of 

mathematical systems, e.g. Mathematica, Maple, …
 The notion of standard basis was independently invented 

by Hironaka.



Reduced Groebner Bases
 Consider Q[x1, x2,…, xn] and assume the ordering of 

monomials is fixed. 
 Buchberger invented a transformation of any finite set of 

polynomials {f1, f2,..., fm} into { g1, g2,..., gkso that  
 f1, f2,..., fm g1, g2,..., gk .  The set is determined 

uniquely and called the reduced  Groebner bases.
Moreover he invented an algorithm which takes a pair of  
a set {f1, f2,..., fn} and a polynomial g as an input and 
outputs .
 The concept Groebner bases are one of foundations of 

mathematical systems 
 The notion of standard basis was independently invented by 

Hironaka



Hilbert’s bases theorem
Theorem[Hilbert] For any ideal I in Q[x1,…, xn] there 

exist f1, f2, … , fm Q[x1,…, xn]  such that I = f1, 
f2,..., fm 



Positive data
x4, y3, x5+y 6,.., x2,…

Conjecture
x4, x4, y3, x4, y3,…, 

x2, y3,…

Teacher

Learning Ideals of Q[x,..., xn]
The class of all ideals

Buchbereger’s Algorithm
(computing reduced 
Groebner bases of { e1, 
e2, …, en }

x2, y3

x4, y3

g1,…, gm

Reduced Groebner
basis



Basis as Characteristic Sets
 In the context of learning from positive examples, 

the reduced Groebner basis {g1, g2, …, gm} 
works as a characteristic set of an ideal.



C2: The Characteristic Set Property
 A subset C(g) of a language of L(g) is a characteristic 

set of L(g) in L(H) if 
(1) C(g) is a finite set and 
(2) for every L(g’)  L(H) C(g)  L(g’) implies  

L(g)  L (g’)
Theorem [Kobayashi] A class L(H) of languages is 
identifiable in the limit from positive presentation 
if every language L(g) in L(H) has a characteristic set 
C(g) in L(H).



Hilbert’s original paper



Hilbert’s original paper



History of Mathmatics



Hilbert Decision Problem Basis Theorem
Hilbert's tenth problem

1930s    Church-Turing Thesis
1940-50s Theory of Computation
1960s         Gold: Computational Learning
1970s             Angluin : Learning from Positives
1980s Groebner Basis
2000s- Machine Learning, Data Mining

History of Math and CS
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